tìm gtnn của biểu thức sau với x>3
P= \(\dfrac{x^2+2x-9}{x-3}\)
Cho các biểu thức sau (giải chi tiết)
A = \(\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\) và B = \(\dfrac{2x+3\sqrt{x}+9}{x-9}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức B
b) Cho \(P=\dfrac{A}{B}\). Tìm GTNN của P
a: \(B=\dfrac{2x+3\sqrt{x}+9-x+3\sqrt{x}}{x-9}=\dfrac{x+9}{x-9}\)
b: \P=A:B
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\cdot\dfrac{x-9}{x+9}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x+9}>=\dfrac{-1\cdot3}{9}=\dfrac{-1}{3}\)
Dấu = xảy ra khi x=0
\(\left[\dfrac{2x}{x+3}+\dfrac{8}{x-3}\dfrac{2x+12}{x^2-9}\right].\dfrac{x+3}{x^2+6}\) với x ≠ (+-3)
a. Rút gọn biểu thức A
b. Tìm giá trị của x để biểu thức A có giá trị = 5
\(a,A=\dfrac{2x\left(x-3\right)+8\left(x+3\right)-2x-12}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x^2+6}\\ A=\dfrac{2x^2-6x+8x+24-2x-12}{\left(x-3\right)}\cdot\dfrac{1}{x^2+6}\\ A=\dfrac{2x^2+12}{\left(x-3\right)\left(x^2+6\right)}=\dfrac{2\left(x^2+6\right)}{\left(x-3\right)\left(x^2+6\right)}=\dfrac{2}{x-3}\)
\(b,A=5\Leftrightarrow\dfrac{2}{x-3}=5\Leftrightarrow5x-15=2\Leftrightarrow x=\dfrac{17}{5}\)
Cho các biểu thức sau:
A = \(\dfrac{x+\sqrt{x}+10}{x-9}-\dfrac{1}{\sqrt{x}-3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức \(M=\dfrac{A}{B}\)
b) Tìm GTNN của biểu thức M
a: M=A:B
\(=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)
b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)
=>\(M=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi (căn x+3)^2=16
=>căn x+3=4
=>x=1
Tìm GTNN của các biểu thức sau:
1) G= \(\dfrac{x^2}{x-1}\)với x>1
2) H= \(x+\dfrac{1}{x}\)với x ≥2
3) K= \(x^2+\dfrac{1}{x}\)với x ≥3
G = \(\dfrac{x^2}{x-1}\)
= \(\dfrac{x^2-4x+4+4x-4}{x-1}\)
= \(\dfrac{\left(x-2\right)^2+4\left(x-1\right)}{x-1}\)
= \(\dfrac{\left(x-2\right)^2}{x-1}+4\)
Vì x>1 nên \(\left\{{}\begin{matrix}\left(x-2\right)^2\text{≥}0\\x-1>0\end{matrix}\right.\)
=> G ≥ 4
=> G = 4 đạt GTNN
Dấu bằng xảy ra <=> \(\left(x-2\right)^2=0\)
<=> \(x=2\)
\(Do\) \(x>2\)
\(=>\left\{{}\begin{matrix}x-2\text{ ≥0}\\2x-1>0\end{matrix}\right.\)
\(=>\left(x-2\right)\left(2x-1\right)\text{ ≥0}\)
\(< =>2x^2-5x+2\text{≥}0\)
\(< =>2x^2+2\text{≥}5x\)
\(< =>2x+\dfrac{2}{x}\text{≥}5\)
\(< =>x+\dfrac{1}{x}\text{≥}2,5\)
\(< =>H\text{≥}2,5\)
\(< =>H=5\) \(đạt\) \(GTNN\)
Dấu bằng xảy ra khi \(x-2=0< =>x=2\)
\(K=x^2+\dfrac{1}{x}\)
\(=\dfrac{53x^3}{54}+\left(\dfrac{x^2}{54}+\dfrac{1}{2x}+\dfrac{1}{2x}\right)\)
Áp dụng BĐT Cô si cho 3 số dương
\(\dfrac{x^2}{54}+\dfrac{1}{2x}+\dfrac{1}{2x}\text{≥}3.\sqrt[3]{\dfrac{x^2}{54}.\dfrac{1}{2x}.\dfrac{1}{2x}}\)\(\text{≥}\dfrac{53.9}{54}+3.\sqrt[3]{54.4}\)\(=\dfrac{28}{3}\)
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}\dfrac{x^2}{54}=\dfrac{1}{2x}=\dfrac{1}{2x}\\x=3\end{matrix}\right.\)\(< =>x=3\)
Cho 2 biểu thức: A = \(\dfrac{x+7}{3\sqrt{x}}\) và B = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{7\sqrt{x}+3}{9-x}\)với x>0, x≠9
Tìm GTNN của biểu thức P = A.B
Cho hai biểu thức A = \(\dfrac{x^2-9}{3\left(x+5\right)}\) và B = \(\dfrac{x}{x+3}+\dfrac{2x}{x-3}-\dfrac{3x^2+9}{x^2-9}\) với x ≠ -5; x ≠ ±3
a. Tính giá trị của biểu thức A \(x^3+5x^2-9x-45=0\)
b. Rút gọn B
c. Cho P = A : B. Tìm giá trị nguyên của x đề P có giá trị nguyên
b: \(B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{x^2-9}=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
Cho hai biểu thức A = \(\dfrac{x^2-9}{3\left(x+5\right)}\) và B = \(\dfrac{x}{x+3}+\dfrac{2x}{x-3}-\dfrac{3x^2+9}{x^2-9}\) với x ≠ -5; x ≠ ±3
a. Tính giá trị của biểu thức A \(x^3+5x^2-9x-45=0\)
b. Rút gọn B
c. Cho P = A : B. Tìm giá trị nguyên của x đề P có giá trị nguyên
b: \(B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
a) Tìm số tự nhiên x sao cho: 2x+2x+3=72
b)Tìm x nguyên để số hữu tỉ \(\dfrac{x-2}{x+1}\) có giá trị nguyên
c) Tìm GTNN của biểu thức: P=|2x+7|+\(\dfrac{2}{5}\)
a) 2ˣ + 2ˣ⁺³ = 72
2ˣ.(1 + 2³) = 72
2ˣ.9 = 72
2ˣ = 72 : 9
2ˣ = 8
2ˣ = 2³
x = 3
b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)
Ta có:
x - 2 = x + 1 - 3
Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}
⇒ x ∈ {-4; -2; 0; 2}
Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên
c) P = |2x + 7| + 2/5
Ta có:
|2x + 7| ≥ 0 với mọi x ∈ R
|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R
Vậy GTNN của P là 2/5 khi x = -7/2
Cho A = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{2x+8}{2x-4}\) và B = \(\dfrac{2}{\sqrt{x}-6}\) với \(x\ge0;x\ne4;x\ne36\)
a) Rút gọn các biểu thức A
b) Tìm GTNN của biểu thức P = A : B
Bạn xem lại xem đã biết biểu thức đúng chưa vậy?