Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Linh
Xem chi tiết
Khánh Như Trương Ngọc
1 tháng 1 2019 lúc 0:02

Xin lỗi nha, mình ko biết vẽ hình trên máy nên bạn tự vẽ hình giùm mình nha

b)Ta có:\(\widehat{MNB}=\dfrac{1}{2}\stackrel\frown{BM}\left(1\right)\)( góc nội tiếp chắn cung BM)

\(\widehat{AEB}=\dfrac{1}{2}\left(\stackrel\frown{AB-\stackrel\frown{AM}}\right)\)= \(\dfrac{1}{2}\stackrel\frown{BM}\)(2) (Góc có đỉnh ngoài đường tròn)

Từ (1) và (2) ⇒ \(\widehat{MNB}=\widehat{AEB}\)

Xét Δ BMN và Δ BFE có:

\(\widehat{B}\): góc chung

\(\widehat{MNB}=\widehat{AEB}\) ( cùng chắn \(\stackrel\frown{BM}\) )

Do đó: Δ BMN \(\sim\) Δ BFE(g-g)

⇔ BM . BE =BN . BF (đpcm)

Đời về cơ bản là buồn......
30 tháng 12 2018 lúc 14:48

vẽ giùm cái hình đi, lười vẽ hình trên này quá

quynh nhu
Xem chi tiết
văn cuong nguyen nguyen
Xem chi tiết
Thanh Hoàng Thanh
1 tháng 2 2022 lúc 15:46

1) Xét (O):

MA là tiếp tuyến (\(d_1\) là tiếp tuyến; \(M,A\in d_1\)).

\(\Rightarrow MA\perp AB.\Rightarrow\widehat{MAB}=90^o.\)

hay \(\widehat{MAI}=90^o.\)

Xét tứ giác AMEI:

\(\widehat{MAI}+\widehat{MEI}=90^o+90^o=180^o.\)

Mà 2 góc này ở vị trí đối nhau.

\(\Rightarrow\) Tứ giác AMEI nội tiếp đường tròn.

2) Ta có: 

I là trung điểm của OA (gt).

\(\Rightarrow IA=\dfrac{1}{2}OA=\dfrac{1}{2}R.\)

Mà \(R=\dfrac{1}{2}AB\left(AB=2R\right).\)

\(\Rightarrow IA=\dfrac{1}{2}.\dfrac{1}{2}AB=\dfrac{1}{4}AB.\)

Mà \(IB=AB-\dfrac{1}{4}AB=\dfrac{3}{4}AB.\)

\(\Rightarrow IB=3IA.\)

Xét (O):

\(\widehat{EBN}=\dfrac{1}{2}sđ\stackrel\frown{EB}\) (Góc tạo bởi tiếp tuyến và dây).

\(\widehat{EAB}=\dfrac{1}{2}sđ\stackrel\frown{EB}\) (Góc nội tiếp).

\(\Rightarrow\widehat{EBN}=\widehat{EAB}.\)

hay \(\widehat{EBN}=\widehat{EAI}.\)

Ta có: \(EI\perp EN\left(gt\right).\Rightarrow\widehat{IEN}=90^o.\)

\(\Rightarrow\widehat{IEB}+\widehat{BEN}=90^o.\) (1)

Xét (O):

AB là đường kính (gt).

\(E\in\left(O\right)\left(gt\right).\)

\(\Rightarrow\widehat{AEB}=90^o\) (Góc nội tiếp chắn nửa đường tròn).

\(\Rightarrow\widehat{AEI}+\widehat{IEB}=90^o.\) (2)

Tứ (1) và (2) \(\Rightarrow\widehat{AEI}=\widehat{BEN}.\)

Xét \(\Delta AEI\) và \(\Delta BEN:\)

\(\widehat{AEI}=\widehat{BEN}\left(cmt\right).\)

\(\widehat{EAI}=\widehat{EBN}\left(cmt\right).\)

\(\Rightarrow\Delta AEI\sim\Delta BEN\left(g-g\right).\)

\(\Rightarrow\dfrac{EI}{EN}=\dfrac{AI}{BN}\) (2 cạnh tương ứng tỉ lệ).

\(\Rightarrow EI.BN=AI.EN.\\ \Rightarrow3EI.BN=3AI.EN.\\ \Rightarrow3EI.BN=IB.EN.\)

Nga Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2022 lúc 19:36

a: Xét (O) có

CM,CA là các tiếp tuyến

nen CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA 

nên OC vuông góc với MA tại trung điểm của MA

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD vuông góc với MB tại trung điểm của MB

Từ (1)và (2) suy ra góc COD=1/2*180=90 độ

=>O nằm trên đường tròn đường kính DC

b: Xét tứ giác MIOK có

góc MIO=góc IOK=góc MKO=90 độ

nên MIOK là hình chữ nhật

=>MO=IK

c: Xét hình thang ABDC có

O,O' lần lượt là trung điểm của AB,CD

nên OO' là đường trung bình

=>OO' vuông góc với AB

=>AB là tiếp tuyến của (O')

Tiến Vũ
Xem chi tiết
Lê Thị Khánh Huyền
Xem chi tiết
tran nguyen bao quan
9 tháng 1 2019 lúc 20:36

Ta có \(\widehat{BMA}+\widehat{ONA}=90^0\)(Hai góc phụ nhau)

\(\widehat{BMA}+\widehat{ABM}=90^0\)(Hai góc phụ nhau)

Suy ra \(\widehat{ONA}=\widehat{ABM}\)

Xét △ABM và △ANO có

\(\widehat{ONA}=\widehat{ABM}\)(cmt)

\(\widehat{MAB}=\widehat{NAO}=90^0\)

Suy ra △ABM \(\sim\) △ANO(g-g)

\(\Rightarrow\dfrac{AB}{AN}=\dfrac{AM}{AO}\) hay AM.AN=AB.AO=2R.R=2R2(không đổi)

Vậy AM.AN không đổi khi M chuyển động trên d

thuy tran
Xem chi tiết
Te
Xem chi tiết
Trần Hữu Phước
Xem chi tiết