Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
văn cuong nguyen nguyen

Cho duong tron tam O duong kinh AB=2R. Goi d1 d2 lan luot la tiep tuyen cua (O) tai A, B, I la trung diem OA, E la diem thay doi tren (O) sao cho E ko trung A, B. Duong thang d di qua E vuong goc voi EI cat d1, d2 lan luot tai M, N.

1)Chung minh AMEI noi tiep

2) IB× NE=3IE×NB

Thanh Hoàng Thanh
1 tháng 2 2022 lúc 15:46

1) Xét (O):

MA là tiếp tuyến (\(d_1\) là tiếp tuyến; \(M,A\in d_1\)).

\(\Rightarrow MA\perp AB.\Rightarrow\widehat{MAB}=90^o.\)

hay \(\widehat{MAI}=90^o.\)

Xét tứ giác AMEI:

\(\widehat{MAI}+\widehat{MEI}=90^o+90^o=180^o.\)

Mà 2 góc này ở vị trí đối nhau.

\(\Rightarrow\) Tứ giác AMEI nội tiếp đường tròn.

2) Ta có: 

I là trung điểm của OA (gt).

\(\Rightarrow IA=\dfrac{1}{2}OA=\dfrac{1}{2}R.\)

Mà \(R=\dfrac{1}{2}AB\left(AB=2R\right).\)

\(\Rightarrow IA=\dfrac{1}{2}.\dfrac{1}{2}AB=\dfrac{1}{4}AB.\)

Mà \(IB=AB-\dfrac{1}{4}AB=\dfrac{3}{4}AB.\)

\(\Rightarrow IB=3IA.\)

Xét (O):

\(\widehat{EBN}=\dfrac{1}{2}sđ\stackrel\frown{EB}\) (Góc tạo bởi tiếp tuyến và dây).

\(\widehat{EAB}=\dfrac{1}{2}sđ\stackrel\frown{EB}\) (Góc nội tiếp).

\(\Rightarrow\widehat{EBN}=\widehat{EAB}.\)

hay \(\widehat{EBN}=\widehat{EAI}.\)

Ta có: \(EI\perp EN\left(gt\right).\Rightarrow\widehat{IEN}=90^o.\)

\(\Rightarrow\widehat{IEB}+\widehat{BEN}=90^o.\) (1)

Xét (O):

AB là đường kính (gt).

\(E\in\left(O\right)\left(gt\right).\)

\(\Rightarrow\widehat{AEB}=90^o\) (Góc nội tiếp chắn nửa đường tròn).

\(\Rightarrow\widehat{AEI}+\widehat{IEB}=90^o.\) (2)

Tứ (1) và (2) \(\Rightarrow\widehat{AEI}=\widehat{BEN}.\)

Xét \(\Delta AEI\) và \(\Delta BEN:\)

\(\widehat{AEI}=\widehat{BEN}\left(cmt\right).\)

\(\widehat{EAI}=\widehat{EBN}\left(cmt\right).\)

\(\Rightarrow\Delta AEI\sim\Delta BEN\left(g-g\right).\)

\(\Rightarrow\dfrac{EI}{EN}=\dfrac{AI}{BN}\) (2 cạnh tương ứng tỉ lệ).

\(\Rightarrow EI.BN=AI.EN.\\ \Rightarrow3EI.BN=3AI.EN.\\ \Rightarrow3EI.BN=IB.EN.\)


Các câu hỏi tương tự
nguyen the anh
Xem chi tiết
Phong Linh
Xem chi tiết
Bùi sỹ việt
Xem chi tiết
Nguyen Thi Thu Hien
Xem chi tiết
Te
Xem chi tiết
Trâm Ngọc
Xem chi tiết
Nguyen Thi Thu Hien
Xem chi tiết
thuphuong ninh
Xem chi tiết
Nguyen Thi Thu Hien
Xem chi tiết