Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần gia bảo
Xem chi tiết
vũ tiền châu
7 tháng 10 2018 lúc 21:00

đánh sai đề rồi bạn êi, phải là \(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\Leftrightarrow2x\sqrt{1-y^2}\) \(+2y\sqrt{2-z^2}+2z\sqrt{3-x^2}=6\)

<=> \(\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)

<=> ..bla bla tự làm nhá !

trần gia bảo
7 tháng 10 2018 lúc 21:15

Thanks bạn nhiều nhiều lắm nha

roronoa zoro
Xem chi tiết
Bùi Anh Tuấn
27 tháng 10 2019 lúc 16:27

Sử dụng Bất đẳng thức Bunyakovsky cho 2 bộ 3 số \(\left(\sqrt{1-y^2};\sqrt{2-z^2};\sqrt{3-x^2}\right)\) và \(\left(x,y,z\right)\) ta có

\(\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(x^2+y^2+z^2\right)\cdot\left[6-\left(x^2+y^2+z^2\right)\right]\left(1\right)\)

Đặt \(x^2+y^2+z^2=a\) ta có Bất đẳng thức (1) tương đương

\(9=\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(a\right)\cdot\left(6-a\right)\)

\(=-a^2+6a-9+9=-\left(a-3\right)^2+9\le9\)

Dấu "=" xảy ra khi  6iS2fUS.gif Giải hệ phương trình trên ta được 5vTcgmx.gif

Khách vãng lai đã xóa
Bùi Anh Tuấn
27 tháng 10 2019 lúc 16:30

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=x^2+y^2+z^2=3\\\frac{x^2}{1-y^2}=\frac{y^2}{2-z^2}=\frac{z^2}{3-x^2}=1\end{cases}}\)   giải hệ pt ta có \(\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}\)

Thế nào nó bị lỗi nên không hiển thị

Khách vãng lai đã xóa
•Čáøツ
27 tháng 10 2019 lúc 16:31

\(z=\sqrt{2}\)nữa olm bị sao mà lỗi suất vậy

Khách vãng lai đã xóa
Joy
Xem chi tiết
Victorique de Blois
13 tháng 8 2021 lúc 11:21

có \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}\) 

\(y\sqrt{2-z^2}\le\frac{y+2-z^2}{2}\) cô si

\(z\sqrt{3-x^2}\le\frac{z+3-x^2}{2}\)

\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\frac{6}{2}=3\)

dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\sqrt{1-y^2}\\y=\sqrt{2-z^2}\\z=\sqrt{3-x^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\y^2=2-z^2\\z^2=3-x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}}\)

Khách vãng lai đã xóa
Victorique de Blois
13 tháng 8 2021 lúc 11:40

chết mình ghi thiếu ^2 ở y và z :v hjhj

Khách vãng lai đã xóa
Uyên
13 tháng 8 2021 lúc 15:24

khôn  =))

Khách vãng lai đã xóa
Nguyễn Mỹ Hạnh
Xem chi tiết
s2 Lắc Lư  s2
13 tháng 4 2016 lúc 22:25

chắc là ko còn ai đâu,,tại bài cậu khó quá

Mr Lazy
13 tháng 4 2016 lúc 23:36

\(\Leftrightarrow\left[x^2+\left(1-y^2\right)-2x\sqrt{1-y^2}\right]+\left[y^2+\left(2-z^2\right)-2y\sqrt{2-z^2}\right]+\left[z^2+\left(3-x^2\right)-2z\sqrt{3-x^2}\right]=0\)

\(\Leftrightarrow\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)

\(\Leftrightarrow x=\sqrt{1-y^2};\text{ }y=\sqrt{2-z^2};\text{ }z=\sqrt{3-x^2};\text{ }\left(x,y,z\ge0\right)\)

\(\Leftrightarrow\left(x^2;y^2;z^2\right)=\left(1;0;2\right)\Leftrightarrow\left(x;y;z\right)=\left(1;0;\sqrt{2}\right)\)

Valerie
14 tháng 4 2016 lúc 6:36

em mới học lớp 5

mynameisbro
Xem chi tiết
Nguyễn Đức Trí
21 tháng 9 2023 lúc 4:57

\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)

Áp dụng Bđt Bunhiacopxki :

\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)

Đặt \(t=x+y+z+8\)

\(\left(1\right)\Leftrightarrow t^2=56t-784\)

\(\Leftrightarrow t^2-56t+784=0\)

\(\Leftrightarrow\left(t-28\right)^2=0\)

\(\Leftrightarrow t=28\)

\(\Leftrightarrow x+y+z+8=28\)

\(\Leftrightarrow x+y+z-6=14\)

\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài

Nguyễn Võ Thảo Vy
Xem chi tiết
Thân Nhật Minh
Xem chi tiết
Đức Anh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2023 lúc 9:05

Với a,b,c dưog thì \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}>=\dfrac{\left(x+y+z\right)^2}{a+b+c}\)

\(P>=\dfrac{\left(x+y+z\right)^2}{xy+yz+xz+\sqrt{1+x^3}+\sqrt{1+y^3}+\sqrt{1+z^3}}\)

\(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}< =\dfrac{2+x^2}{2}\)

Dấu = xảy ra khi x=2

=>\(P>=\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2+6}=\dfrac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2+6}\)

Đặt t=(x+y+z)^2(t>=36)

=>P>=2t/t-6

Xét hàm số \(f\left(t\right)=\dfrac{t}{t+6}\left(t>=36\right)\)

\(f'\left(t\right)=\dfrac{6}{\left(t+6\right)^2}>=0,\forall t>=36\)

=>f(t) đồng biến

=>f(t)>=f(36)=6/7

=>P>=12/7

Dấu = xảy ra khi x=y=z=2

camcon
Xem chi tiết

Pt đầu tương đương: \(\sqrt[3]{x^2}+2\sqrt[3]{y^2}+4\sqrt[3]{z^2}=7\)

Pt 2 tương đương:

\(\left(xy^2+z^4\right)^2-\left(xy^2-z^4\right)^2=4\)

\(\Leftrightarrow4xy^2z^4=4\)

\(\Leftrightarrow xy^2z^4=1\) (1)

Quay lại pt đầu, áp dụng AM-GM:

\(7=\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}+\sqrt[3]{z^2}+\sqrt[3]{z^2}+\sqrt[3]{z}\ge7\sqrt[7]{\sqrt[3]{x^2}.\sqrt[3]{y^4}.\sqrt[3]{z^8}}\)

\(\Leftrightarrow\sqrt[21]{x^2y^4z^8}\le1\)

\(\Leftrightarrow x^2y^4z^8\le1\)

\(\Rightarrow\left|xy^2z^4\right|\le1\Rightarrow xy^2z^4\le1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x^2=y^2=z^2\\xy^2z^4=1\\x>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=\pm1\\z=\pm1\end{matrix}\right.\)

Các bộ thỏa mãn là: \(\left(1;1;1\right);\left(1;1;-1\right);\left(1;-1;1\right);\left(1;-1;-1\right)\)