Biết rằng số tự nhiên n chia hết cho 2 và n2- 2n chia hết cho 5. Hãy tìm chữ số tận cùng của n.
Biết rằng số tự nhiên n chia hết cho 2 và n2 - 2n chia hết cho 5. Hãy tìm chữ số tận cùng của n.
giup em vss mai em thi roi. C.onn mn=(
n chia hết cho 2
=>n có chữ số tận cùng là 0;2;4;6;8
=>n=10k; n=10k+2;n=10k+4;n=10k+6;n=10k+8
Đặt \(A=n^2-2n\)
\(=n\left(n-2\right)\)
TH1: n=10k
\(A=n\left(n-2\right)=10k\left(10k-2\right)⋮5\)
=>Nhận
TH2: n=10k+2
=>\(A=n\left(n-2\right)=\left(10k+2\right)\left(10k+2-2\right)=10k\left(10k+2\right)⋮5\)
=>Nhận
TH3: n=10k+4
\(A=n\left(n-2\right)\)
\(=\left(10k+4\right)\left(10k+4-2\right)\)
\(=\left(10k+4\right)\left(10k+2\right)\) không chia hết cho 5
=>Loại
TH4: n=10k+6
A=n(n-2)
=(10k+6)(10k+6-2)
=(10k+6)(10k+4) không chia hết cho 5
=>Loại
Th5: n=10k+8
A=n(n-2)
=(10k+8)(10k+8-2)
=(10k+8)(10k+6) không chia hết cho 5
=>Loại
Vậy: n có chữ số tận cùng là 0 hoặc 2
n chia hết cho 2
=>n có chữ số tận cùng là 0;2;4;6;8
=>n=10k; n=10k+2;n=10k+4;n=10k+6;n=10k+8
Đặt A = n 2 − 2 n = n ( n − 2 ) TH1: n=10k A = n ( n − 2 ) = 10 k ( 10 k − 2 ) ⋮ 5
=>Nhận
TH2: n=10k+2
=> A = n ( n − 2 ) = ( 10 k + 2 ) ( 10 k + 2 − 2 ) = 10 k ( 10 k + 2 ) ⋮ 5
=>Nhận
TH3: n=10k+4
A = n ( n − 2 ) = ( 10 k + 4 ) ( 10 k + 4 − 2 ) = ( 10 k + 4 ) ( 10 k + 2 ) không chia hết cho 5
=>Loại TH4: n=10k+6 A=n(n-2) =(10k+6)(10k+6-2) =(10k+6)(10k+4) không chia hết cho 5
=>Loại
Th5: n=10k+8 A=n(n-2) =(10k+8)(10k+8-2) =(10k+8)(10k+6) không chia hết cho 5
=>Loại
Vậy: n có chữ số tận cùng là 0 hoặc 2
biết rằng số tự nhiên n chia hết cho 2 và n2-n chia hết cho 5.hãy tìm chữ số tận cùng của n
n2-n = n*(n-1),
TH1 : n = 0, thỏa mãn, TH2 n-1 chia hết cho 5, suy ra n =6, còn n=1 thì ko thỏa mãn.
Biết rằng số tự nhiên n chia hết cho 2 va n^2-n chia hết cho 5. Hãy tìm chữ số tận cùng của n
Biết rằng số tự nhiên n chia hết cho 2 và (n2 - n) chia hết cho 5. Tìm chữ số tận cùng của n
gợi ý:
n^2-2n có chữ số tc là 0 hoặc 5
Vì n chia hết cho 2 =>n có cs tận cùng là : 0,2,4,6,8
xét từng Th
Bạn giải chi tiết ra hộ mình được không
Biết số tự nhiên n chia hết cho 2 và \(n^2-n\) chia hết cho 5 . Tìm chữ số tận cùng của n
n chia hết cho 2 => n có tận cùng là các chữ số chẵn (1)
Ta có : \(n^2-n=n\left(n-1\right)\) chia hết cho 5
=> n chia hết cho 5 hoặc n-1 chia hết cho 5
+) n chia hết cho 5 => n có chữ số tận cùng = 0 hoặc 5
+) n-1 chia hết cho 5 => n có chữ số tận cùng = 0 hoặc 5 => n có chữ số tận cùng là 1 và 6
Có : n(n-1) chia hết cho 5 có chữ số tận cùng là 0;1;5;6 (2)
Từ (1)(2) ta có chữ số tận cùng của n là 0 ; 6
Cho số tự nhiên n chia hết cho 2 , n2-n chia hết cho 5. hãy tìm chữ số tận cùng của n
hãy tìm chữ số tận cùng của n = 0;1;5;6 nha bạn.
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
Chứng minh rằng:
a) n và n5 có chữ số tận cùng giống nhau với n là số tự nhiên.
b) n2 luôn luôn chia cho 3 dư 1 với n không chia hết cho 3 và n là số tự nhiên.
a) Xét hiệu : \(n^5-n\)
Đặt : \(A\text{=}n^5-n\)
Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)
\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)
Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .
\(\Rightarrow A⋮2\)
Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)
\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)
\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)
Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.
Do đó : \(A⋮10\)
\(\Rightarrow A\) có chữ số tận cùng là 0.
Suy ra : đpcm.
b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)
Với : n= 3k+1
Thì : \(n^2\text{=}9k^2+6k+1\)
Do đó : \(n^2\) chia 3 dư 1.
Với : n=3k+2
Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)
Do đó : \(n^2\) chia 3 dư 1.
Suy ra : đpcm.
Biết rằng n chia hết cho 2 và n^2 - n chia hết cho 5. Tìm chữ số tận cùng của n