Cho S = 20 + 21+22+ .....+2102+2103
Chứng minh S \(⋮\) 225
Chứng minh S= 2+21+22+...+2103 là bội của -5
(Sửa \(2\) thành \(2^0\))
Để \(S\) là \(B\left(-5\right)\)
thì \(S\) ⋮ \(-5\)
⇒ Ta phải chứng minh \(S\) ⋮ \(-5\)
Ta có:
\(S=2^0+2^1+2^2+...+2^{103}\)
⇔\(S=\left(2^0+2^1+2^2+2^3\right)+\left(2^4+2^5+2^6+2^7\right)+...+\left(2^{100}+2^{101}+2^{102}+2^{103}\right)\)
⇔\(S=2^0\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{100}\left(1+2+2^2+2^3\right)\)
⇔\(S=\left(1+2+2^2+2^3\right)\left(2^0+2^4+...+2^{100}\right)\)
⇔\(S=15\left(2^0+2^4+...+2^{100}\right)\)
Vì \(15\) ⋮ \(-5\)
⇒ \(S\) ⋮ \(-5\)
⇒ \(S\) là bội của \(-5\)
⇒ ĐPCM
\(\#PeaGea\)
Cho s=1/20+1/21+1/22+...+1/199+1/200. Chứng minh s>9/10
Ta có : \(S=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{199}+\frac{1}{200}\)
\(\Rightarrow S>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\) ( 181 phân số )
\(\Rightarrow S>\frac{181}{200}>\frac{180}{200}=\frac{9}{10}\)
\(\Rightarrow S>\frac{9}{10}\) \(\Rightarrowđpcm\)
C = 120120 + 121121 + 122122 + ... + 12001200
⇒ CC> 12001200 + 12001200 + 12001200 + ...... + 12001200 ( 181181 phân số )
⇒ CC > 181200181200 > 180200180200 = 910910
⇒ CC >910
Cho s=5/20+5/21+5/22+5/23+...+5/49.chứng minh rằng: 3 < s < 8
Cho S =5/20+5/21+5/22+5/23+..........+5/49. Chứng minh rằng 3<S<8
\(S=5.\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\right)\)
Xét \(A=\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\). Chứng minh 3/5 < A < 8/5
+ Có: \(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}\frac{3}{5}\Rightarrow S>3\) (2)
Từ (1)(2) => 3 < S < 8
Này Trần Thị Loan à, tớ thấy cậu nên
thay chữ "xét" ở chỗ "xét A" thành chữ"đặt"
nghe hợp lý hơn.
đáng lẽ ra 1/30+1/31 + ... + 1/34 < 1/30 + 1/30 + ... + 1/30 = 5/30 = 1/6
SAI RỒI
RỨA MÀ CHO ĐÚNG
Cho S =5/20+5/21+5/22+5/23+..........+5/49. Chứng minh rằng 3<S<8
S=20 + 21 + 22 +...+ 27
chứng tỏ S chia cho 3
\(S=2^0+2^1+2^2+...+2^7\)
\(\Rightarrow S=\left(2^0+2^1\right)+2^2\left(2^0+2^1\right)+...+2^6\left(2^0+2^1\right)\)
\(\Rightarrow S=3+2^2.3+...+2^6.3\)
\(\Rightarrow S=3\left(1+2^2+...+2^6\right)⋮3\)
\(\Rightarrow dpcm\)
S=5/20+5/21+5/22+5/23+5/24 HÃY CHỨNG MINH S>1
Ta có: \(\frac{5}{20}>\frac{5}{25}\)
\(\frac{5}{21}>\frac{5}{25}\)
\(\frac{5}{22}>\frac{5}{25}\)
\(\frac{5}{23}>\frac{5}{25}\)
\(\frac{5}{24}>\frac{5}{25}\)
=> \(S>\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}=5\cdot\frac{5}{25}=\frac{25}{25}=1\)
Vậy S > 1
Ta có :
\(\frac{5}{20}>\frac{5}{25}\)
\(\frac{5}{21}>\frac{5}{25}\)
\(\frac{5}{22}>\frac{5}{25}\)
\(\frac{5}{23}>\frac{5}{25}\)
\(\frac{5}{24}>\frac{5}{25}\)
\(\Rightarrow S>\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}=5\cdot\frac{5}{25}=\frac{25}{25}=1\)
Vậy \(S>1\)
Cho S = 5/20+5/21+5/22+...+5/59
Chứng minh rằng 3<S<8
(5/20 là 5 phần 20) ( Mình ko biết viết phân số kiểu gì, thông cảm).
Cho S =5/20+5/21+5/22+5/23+..........+5/49. Chứng minh rằng 3<S<8
Các bn nhớ giúp mình nhé
Bạn tham khảo câu này nè
https://olm.vn/hoi-dap/detail/4209841471.html
Học tốt
Cho S =\(\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+...+\frac{5}{49}\). Chứng minh : 3<S<8