△ABC đều , D,E,F lần lượt trên AB,AC,BC | AD =BE = CF . Chứng minh △DEF đều .
ABC đều. Gọi D,E,F là 3 điểm lần lượt nằm trên các cạnh AB, BC, CA sao cho AD=BE=CF a) Chứng minh rằng DEF là tam giác đều b) Gọi M, N, K là 3 điểm lần lượt nằm trên các tia đối của các tia AB, BC,CA sao cho AM=BN=CK Chứng minh là tam giác đều
Tam giác ABC đều. Gọi d,e,f là 3 điểm lần lượt nằm trên cạnh ab,bc,ca sao chi ad=be=cf a) chứng minh tam giác DEF là tam giác đều b) gọi m,n,k là 3 điểm làn lượt nằm trên các tia đối của các tia ab,bc,ca sao cho am=bn=ck. Chứng minh tam giác MNK là tam giác đều
vẽ hình giúp mình
Làm nhanh nhanh giúp mình nha!!!!😢😢
cho tam giác ABC đều .gọi EFD lần lượt thuộc các cạnh AB,BC,AC SAO CHO AD=CF=BE chứng minh DEF đều
Cho tam giác ABC đều . Trên tia đối các tia AB , BC , CA lấy D , E , F sao cho AD = BE = CF . Chứng minh rằng : tam giác DEF đều .
Cho tam giác ABC đều . Trên tia đối các tia AB , BC , CA lấy D , E , F sao cho AD = BE = CF . Chứng minh rằng : tam giác DEF đều . Tam giác ABC và tam giác DEF có cùng trọng tâm
Xét ΔDAF và ΔEBD có
DA=EB
góc DAF=góc EBD(=120 độ)
AF=BD
=>ΔDAF=ΔEBD
=>DF=ED
Xét ΔFCE và ΔEBD có
FC=EB
góc FCE=góc EBD
CE=BD
=>ΔFCE=ΔEBD
=>FE=ED
=>FE=ED=DF
=>ΔDEF đều
Cho tam giác ABC đều Trên cạnh AB BC AC lần lượt lấy các điểm D,E,F sao cho AD=BE=CF.CMR:Tam giác DEF đều
Cho tam giác đều ABC. Trên các cạnh AB, BC, CA lần lượt lấy D, E, F sao cho AD=BE=CF. Chứng minh tam giác DFE đều. (vẽ rồi trả lời câu hỏi nhé)
Cho tam giác ABC đều. Lấy các điểm D,E, F theo thứ tự thuộc các cạnh AB,BC,AC sao cho AD=BE=CF. Chứng minh rằng tam giác DEF đều.
Xét ΔABCΔABC là tam giác đều (gt)
=> {ABCˆ=ACBˆ=BACˆAB=AC=BC{ABC^=ACB^=BAC^AB=AC=BC (tính chất tam giác đều)
Có : ⎧⎩⎨⎪⎪D∈ABE∈BCF∈AC{D∈ABE∈BCF∈AC (gt)
=> ⎧⎩⎨⎪⎪AB=AD+BDAC=CF+CFBC=BE+CE{AB=AD+BDAC=CF+CFBC=BE+CE
Mà : {AD=BE=CFAB=AC=BC{AD=BE=CFAB=AC=BC (cmt)
=> BD=AF=CEBD=AF=CE
Xét ΔADF;ΔBEDΔADF;ΔBED có :
AF=BD(cmt)AF=BD(cmt)
DAFˆ=EBDˆDAF^=EBD^ (gt)
AD=BE(cmt)AD=BE(cmt)
=> ΔADF=ΔBED(c.g.c)ΔADF=ΔBED(c.g.c)
=> DF=DEDF=DE (2 cạnh tương ứng) (1)
Xét ΔADF;ΔCEFΔADF;ΔCEF có :
AF=EC(cmt)AF=EC(cmt)
DAFˆ=FCEˆDAF^=FCE^ (tam giác ABC đều - gt)
DA=FC(cmt)DA=FC(cmt)
=> ΔADF=ΔCEF(c.g.c)ΔADF=ΔCEF(c.g.c)
=> DF=EFDF=EF ( 2 cạnh tương ứng) (2)
- Từ (1) và (2) => DF=DE=EFDF=DE=EF
Xét ΔDEFΔDEF có :
DF=DE=EFDF=DE=EF (cmt)
=> ΔDEFΔDEF là tam giác đều (đpcm)
Cho tam giác đều ABC. Trên các cạnh AB, BC, CA lấy theo thứ tự các điểm D, E, F sao cho AD=BE=CF. Chứng minh tam giác DEF là tam giác đều
hình chỉ minh họa thôi nhé mk sẽ giải cho
vì AD=BE=CF nên AD,BE,CF là đường cao là trung trực là tung tuyến phân giác mà 3 đường cao đi qua 1 điểm , điểm này cách đều D,E,F nên tam giác DEF là tam giac đều
AB=AC=BC
AD=BE=CF
=>BD=EC=AF
Xet ΔADF và ΔBED có
AD=BE
góc A=góc B
AF=BD
=>ΔADF=ΔBED
=>DF=ED
Xét ΔADF và ΔCFE có
AD=CF
góc A=góc C
AF=CE
=>ΔADF=ΔCFE
=>DF=FE=ED
=>ΔDEF đều