Cho tam giác ABC cân tại A với A là góc nhọn. CD là đường phân giác góc ACB ( D thuộc AB) qua D kẻ đường vuông góc với CD, đường này cắt đường thẳng CB tại E. Chứng minh: BD=1/2 EC
Cho tam giác ABC cân tại A với A là góc nhọn. CD là đường phân giác góc ACB ( D thuộc AB) qua D kẻ đường vuông góc với CD, đường này cắt đường thẳng CB tại E. Chứng minh: BD=1/2 EC
Cho tam giác ABC cân tại A với A là góc nhọn. CD là đường phân giác góc ACB ( D thuộc AB) qua D kẻ đường vuông góc với CD, đường này cắt đường thẳng CB tại E. Chứng minh: BD=1/2 EC
Bài 1: Tam giác ABC vuông cân tại A, M thuộc AC. Kẻ tia Ax vuông góc với BM cắt BC tại H. K là điểm đối xứng với C qua H. Kẻ tia Ky vuông góc với BM cắt AB tại I. Tính góc AIM?
Bài 2: Tam giác ABC cân tại A với góc A nhọn. CD là đường phân giác của góc ACB ( D thuộc AB ). Qua D kẻ vuông góc với CD cắt CB tại E. CMR: BD = 1/2 EC.
Bùi Như Lạc cậu cũng hay đi bình phẩm người khác nhỉ chắc cậu hoàn hảo lắm à
cho tam giác abc cân tại a góc a nhọn CD là đường phân giác góc ACB (d thuộc ab). qua d kẻ đường vuông góc CD, đường này cắt CN tại e. c/m : bd=1/2ec
Câu 4 : Cho tam giác ABC cân tại A với góc A nhọn, CD là đường phân giác của góc ACB (D thuộc AB) ; qua D kẻ đường vuông góc với CD cắt đường thẳng CB tại E. Chứng minh BD = 1/2EC.
Câu 5 : Cho tam giác ABC có ba góc nhọn, M là một điểm di động trên AB. Qua A, B vẽ các đường thẳng song song với CM, chúng lần lượt cắt các đường thẳng BC, CA tại P và Q. Tìm vị trí điểm M để biểu thức 1/AP + 1/BQ + 2011/CM đạt giá trị lớn nhất.
cho tam giac ABC cân tại A( A là góc nhọn). Kẻ đường phân giác góc C cắt AB tại D. Từ D kẻ đường thẳng vuông góc với CD và cắt BC tại E. Chứng minh BD=1/2EC
Cho tam giác ABC cân tại A. Kẻ phân giác CD ( D không thuộc AB). Qua D vẽ đường thẳng vuông góc với CD, cắt BC tại F và cắt CA tại K. Đường thẳng kẻ qua D và song song với BC cắt AC tại E. Phân giác của góc BAC cắt DE tại M. Chứng minh rằng: a) Hai tam giác CDF và CDK bằng nhau
GIÚP MIK ĐI GẤP QUÁ
Cho tam giác ABC cân tại A. Kẻ tia phân giác CD (D thuộc AB). Qua D vẽ đường thẳng vuông góc với CD, cắt CB tại F và CA tại K. Ddường thẳng kẻ qua D và // BC cắt AC tại E. Phân giác của gọc BAC cắt DE tại M. Chứng minh rằng:
a) Tam giác CDF và tam giác CDK bằng nhau.
b) Các tam giác DEC và DEK là tam giác cân.
c) CF = 2BD.
d) MD = 1/4CF.
a: Xét ΔCDF vuông tại D và ΔCDK vuông tại D có
CD chung
góc FCD=góc KCD
=>ΔCDF=ΔCDK
b: Xét ΔEDC có góc EDC=góc ECD
nên ΔECD cân tại E
=>EC=ED
=>góc ECD=góc EDC
=>góc EDK=góc EKD
=>ΔKED cân tại E
Cho tam giác ABC cân tại A. Kẻ đường thẳng vuông góc với AB tại B và kẻ đường thẳng vuông góc với AC tại C, hai đường thẳng này cắt nhau ở D.
⦁ Chứng minh: BD = DC
⦁ Từ B kẻ đường thẳng vuông góc với AC và cắt AC ở E. Chứng minh: BE // CD
⦁ Chứng minh BC là tia phân giác của góc EBD
⦁ Chứng minh AD vuông góc BC
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
nên DB=DC
b: BE⊥AC
DC⊥AC
Do đó: BE//DC
c: \(\widehat{EBC}=\widehat{DCB}\)
mà \(\widehat{DCB}=\widehat{DBC}\)
nên \(\widehat{EBC}=\widehat{DBC}\)
hay BC là tia phân giác của góc EBD
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: DB=DC
nên D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AD vuông góc BC