Cho tam giác ABC cân tại A. Kẻ đường thẳng vuông góc với AB tại B và kẻ đường thẳng vuông góc với AC tại C, hai đường thẳng này cắt nhau ở D.
⦁ Chứng minh: BD = DC
⦁ Từ B kẻ đường thẳng vuông góc với AC và cắt AC ở E. Chứng minh: BE // CD
⦁ Chứng minh BC là tia phân giác của góc EBD
⦁ Chứng minh AD vuông góc BC
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
nên DB=DC
b: BE⊥AC
DC⊥AC
Do đó: BE//DC
c: \(\widehat{EBC}=\widehat{DCB}\)
mà \(\widehat{DCB}=\widehat{DBC}\)
nên \(\widehat{EBC}=\widehat{DBC}\)
hay BC là tia phân giác của góc EBD
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: DB=DC
nên D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AD vuông góc BC