Xét ΔABM vuông tại B và ΔACM vuông tại C có
AM chung
AB=AC(ΔABC cân tại A)
Do đó: ΔABM=ΔACM(cạnh huyền-cạnh góc vuông)
Suy ra: BM=CM(hai cạnh tương ứng)
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: BM=CM(cmt)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
a) Gọi I là giao điểm của AM và BC
Xét \(\Delta ABM\) vuông tại B và \(\Delta ACM\) vuông tại C có :
AB =AC ( \(\Delta ABC\) cân tại A )
Cạnh AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\) ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) ( 2 góc tương ứng )
\(\Rightarrow\widehat{BAI}=\widehat{CAI}\) ( \(I\in AM\) )
Xét \(\Delta ABI\) và \(\Delta ACI\) có :
AB = AC ( cmt )
\(\widehat{BAI}=\widehat{CAI}\left(cmt\right)\)
Cạnh AI chung
\(\Rightarrow\Delta BAI=\Delta CAI\left(c-g-c\right)\)
\(\Rightarrow\) IB = IC ( 2 cạnh tương ứng )
\(\widehat{AIB}=\widehat{AIC}\) ( 2 góc tương ứng )
Có \(\widehat{AIB}=\widehat{AIC}\left(cmt\right)\)
Mà \(\widehat{AIB}+\widehat{AIC}=180^0\) (2 góc kề bù )
\(\Rightarrow2\widehat{AIB}=180^0\)
\(\Rightarrow\widehat{AIB}=90^0\)
Có \(\widehat{AIB}=90^0\left(cmt\right)\)
\(\Rightarrow AI\perp BC\)
Mà \(I\in AM\) ( vẽ thêm )
\(\Rightarrow AM\perp BC\) tại I
Ta có : \(AM\perp BC\) tại M ( cmt )
IB =IC ( cmt )
\(\Rightarrow\) AM là đường trung trực của BC ( điều phải chứng minh )