trục căn thức ở mẫu:
\(\frac{1}{\sqrt[3]{9}-\sqrt[3]{12}-\sqrt[3]{16}}\)
trục căn ở mẫu số biểu thức
\(\dfrac{1}{\sqrt[3]{16}+\sqrt[3]{12}+\sqrt[3]{9}}\)
help :(((
\(\dfrac{1}{\sqrt[3]{16}+\sqrt[3]{12}+\sqrt[3]{9}}=\dfrac{1}{\left(\sqrt[3]{4}\right)^2+\sqrt[3]{4}.\sqrt[3]{3}+\left(\sqrt[3]{3}\right)^2}\)
\(=\dfrac{\left(\sqrt[3]{4}-\sqrt[3]{3}\right)}{\left(\sqrt[3]{4}-\sqrt[3]{3}\right)\left(\sqrt[3]{4}\right)^2+\sqrt[3]{4}.\sqrt[3]{3}+\left(\sqrt[3]{3}\right)^2}\)
\(=\dfrac{\sqrt[3]{4}-\sqrt[3]{3}}{\left(\sqrt[3]{4}\right)^3-\left(\sqrt[3]{3}\right)^3}=\dfrac{\sqrt[3]{4}-\sqrt[3]{3}}{4-3}=\sqrt[3]{4}-\sqrt[3]{3}\)
Trục căn thức ở mẫu: B = \(\dfrac{1}{\sqrt[3]{16}+\sqrt[3]{12}+\sqrt[3]{9}}\)
Trục căn thức ở mẫu:
a) \(\frac{1}{\sqrt[3]{6}+\sqrt[3]{4}+\sqrt[3]{9}}\)
b)\(\frac{1}{\sqrt[3]{16}+\sqrt[3]{12}+\sqrt[3]{9}}\)
c)\(\frac{1}{\sqrt[4]{2}+\sqrt[4]{4}+\sqrt[4]{8}+\sqrt[4]{16}}\)
trục căn thức ở mẫu
a) \(\frac{1}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\)
b) \(\frac{1}{\sqrt[3]{16}+\sqrt[3]{12}+\sqrt[3]{9}}\)
a; \(=\frac{\sqrt[3]{3}+\sqrt[3]{2}}{\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)}=\frac{\sqrt[3]{3}+\sqrt[3]{2}}{3+2}=\frac{\sqrt[3]{3}+\sqrt[3]{2}}{5}\)
b; tương tự
Trục căn thức ở mẫu: \(\frac{1}{\sqrt[3]{5}+1}\)
\(\frac{1}{\sqrt[3]{16}+\sqrt[3]{12}+\sqrt[3]{9}}\)
TRục căn thức ở mẫu : \(\frac{1}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\)
Ta có: \(\frac{1}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}=\)\(\frac{\sqrt[3]{3}+\sqrt[3]{2}}{\left(\sqrt[3]{2}+\sqrt[3]{3}\right)\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)}=\frac{\sqrt[3]{2}+\sqrt[3]{3}}{\left(\sqrt[3]{2}\right)^3+\left(\sqrt[3]{3}\right)^3}=\frac{\sqrt[3]{2}+\sqrt[3]{3}}{5}\)
1) thực hiện phép tính
\(3\sqrt{12}+\dfrac{1}{2}\sqrt{48}-\sqrt{27}\)
2) trục căn thức ở mẫu : \(\dfrac{2}{\sqrt{3}-5}\)
3) khử mẫu của biểu thức lấy căn: \(\sqrt{\dfrac{2}{5}}\)
1) Ta có: \(3\sqrt{12}+\dfrac{1}{2}\sqrt{48}-\sqrt{27}\)
\(=3\cdot2\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-3\sqrt{3}\)
\(=6\sqrt{3}+2\sqrt{3}-3\sqrt{3}\)
\(=5\sqrt{3}\)
2) Ta có: \(\dfrac{2}{\sqrt{3}-5}\)
\(=\dfrac{2\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}\)
\(=\dfrac{2\left(\sqrt{3}+5\right)}{3-25}\)
\(=\dfrac{-2\left(\sqrt{3}+5\right)}{22}\)
\(=\dfrac{-\sqrt{3}-5}{11}\)
3) Ta có: \(\sqrt{\dfrac{2}{5}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{5}}\)
\(=\dfrac{\sqrt{2}\cdot\sqrt{5}}{5}\)
\(=\dfrac{\sqrt{10}}{5}\)
Trục căn thức ở mẫu
a)\(\frac{1}{2+\sqrt{3}}-\frac{1}{2-\sqrt{3}}+5\sqrt{3}\)
b)\(\frac{1}{\sqrt{5}+2}-\sqrt{9+4\sqrt{5}}\)
a/ \(\frac{1}{2+\sqrt{3}}-\frac{1}{2-\sqrt{3}}+5\sqrt{3}\)
\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+5\sqrt{3}\)
\(=\frac{2-\sqrt{3}}{4-3}-\frac{2+\sqrt{3}}{4-3}+5\sqrt{3}\)
\(=2-\sqrt{3}-2-\sqrt{3}+5\sqrt{3}\)
\(=3\sqrt{3}\)
Vậy..
b/ \(\frac{1}{\sqrt{5}+2}-\sqrt{9+4\sqrt{5}}\)
\(=\frac{1}{\sqrt{5}+2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\frac{1}{\sqrt{5}+2}-\left|\sqrt{5}+2\right|\)
\(=\frac{\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\sqrt{5}-2\)
\(=\sqrt{5}-2-\sqrt{5}-2\)
\(=-4\)
Vậy..
Trục căn thức ở mẫu: \(\frac{2}{\sqrt[3]{9}+\sqrt[3]{3}+1}\)
\(=\frac{2\left(\sqrt[3]{3}-1\right)}{\left(\sqrt[3]{3}-1\right)\left(\sqrt[3]{9}+\sqrt[3]{3}+1\right)}=\frac{2\left(\sqrt[3]{3}-1\right)}{3-1}=\frac{2\left(\sqrt[3]{3}-1\right)}{2}=\sqrt[3]{3}-1\)
Hồ Thu Giang nghe lời bn tốt, tui sẽ hạ nhiệt
Tên Cướp Mặt Trăng hì, tôi cx~ đùa thôi