2n + 1.1.1...1(n chữ số) chia hết cho 3
(n Thuộc N)
Xin chào các bạn!
Mình là thành viên mới của olm.vn và mình rất thắc mắc về một số câu hỏi, các bạn giải giúp mình nhé:
1. Tìm năm chữ số đầu tiên (từ bên trái) của số 2008^2008
2. a) Tìm n thuộc N để n^5+1 chia hết cho n^3+1
b) Tìm n thuộc Z để n^5+1 chia hết cho n^3+1
3. Tìm số nguyên n sao cho:
a) n^2+2n-4 chia hết cho 11
b) 2n^3+n^2+7n+1chia hết cho 2n-1
c) n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
d) n^3-n^2+2n+7 chia hết cho n^2+1
Cmr: với n thuộc N*
a, 2n+111...1 ( n chữ số 1) chia hết cho 3
b, 10n+72n-1 chia hết cho 81
Cmr: với n thuộc N*
a, 2n+111...1 ( n chữ số 1) chia hết cho 3
b, 10n+72n-1 chia hết cho 81
2. a) Tìm n thuộc N để n^5+1 chia hết cho n^3+1
b) Tìm n thuộc Z để n^5+1 chia hết cho n^3+1
3. Tìm số nguyên n sao cho:
a) n^2+2n-4 chia hết cho 11
b) 2n^3+n^2+7n+1chia hết cho 2n-1
c) n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
d) n^3-n^2+2n+7 chia hết cho n^2+1
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
2. a) Tìm n thuộc N để n^5+1 chia hết cho n^3+1
b) Tìm n thuộc Z để n^5+1 chia hết cho n^3+1
3. Tìm số nguyên n sao cho:
a) n^2+2n-4 chia hết cho 11
b) 2n^3+n^2+7n+1chia hết cho 2n-1
c) n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
d) n^3-n^2+2n+7 chia hết cho n^2+1
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
Bài 1. Tìm n thuộc N sao cho 1, n + 2 : hết cho n + 1 2, 2n + 7 : hết cho n + 1 3, 3n : hết cho 5 - 2n 4, 4n + 3 : hết cho 2n +6 5, 3n +1 : hết cho 11 - 2n
Bài 2. Tìm các chữ số x,y biết 1, 25x2y : hết cho 36 2, 2x85y : hết cho cả 2 , 3 , 5 3, 2x3y : hết cho cả 2 và 5 ; chia cho 9 dư 1 4, 7x5y1 : hết cho 3 và x - y = 4 5, 10xy5 : hết cho 45 6, 1xxx1 : hết cho 11 7, 52xy : hết cho 9 và 2, : cho 5 dư 4 8, 4x67y : hết cho 5 và 11 9, 1x7 + 1y5 : hết cho 9 và x - y = 6 10, 3x74y : hết cho 9 và x - y = 1 11, 20x20x20x : hết cho 7
Bài 3: CMR a, Trong 5 số tụ nhiên liên tiếp có 1 số : hết cho 5 b, ( 14n + 1) . ( 14n + 2 ) . ( 14n + 3 ) . ( 14n + 4 ) : hết cho 5 ( n thuộc N ) c, 88...8( n chữ số 8 ) - 9 + n : hết cho 9 d, 8n + 11...1( n chữ số 1 ) : hết cho 9 ( n thuộc N* ) e, 10n + 18n - 1 : hết cho 27
Bài 4. 1, Tìm các số tự nhiên chia cho 4 dư 1, còn chia cho 25 dư 3 2, Tìm các số tự nhiên chia cho 8 dư 3, còn chia cho 125 dư 12
giúp tui với
tui đang cần lắm đó bà con ơi
em mới lớp 5 seo anh gọi em là: BÀ CON
1. Tìm số nguyên n để : a. n + 5 chia hết cho n - 1 b. 2n - 4 chia hết cho n + 2 c. 6n + 4 chia hết cho 2n + 1 d. 3 - 2n chia hết cho n + 1
2. Tìm số tự nhiên có 4 chữ số abcd biết nó thỏa mãn 3 điều kiện sau : a. c là chữ số có tận cùng của số M = 5+ 5^2 + 5^3 + ...+ 5^101 b. abcd chia hết cho 25 c. ab = a + b^2
3. Tìm x,y thuộc Z biết : a. xy + 3x - 7y = 21 b. xy + 3x - 2y = 11
a)Ta có:
\(\left(n+5\right)⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1+6\right)⋮\left(n-1\right)\)
\(\Rightarrow6⋮\left(n-1\right)\)
Ta có bảng sau:
\(n-1\) | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -5 | -2 | -1 | 0 | 2 | 3 | 4 | 7 |
TM | TM | TM | TM | TM | TM | TM | TM |
b)\(\left(2n-4\right)⋮\left(n+2\right)\)
\(\Rightarrow\left(2n+4-8\right)⋮\left(n+2\right)\)
\(\Rightarrow8⋮\left(n+2\right)\)
Ta có bảng sau:
n+2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -10 | -6 | -4 | -3 | -1 | 0 | 2 | 6 |
TM | TM | TM | TM | TM | TM | TM | TM |
c)Ta có:
\(\left(6n+4\right)⋮\left(2n+1\right)\)
\(\Rightarrow\left(6n+3+1\right)⋮\left(2n+1\right)\)
\(\Rightarrow1⋮\left(2n+1\right)\)
Ta có bảng sau:
2n+1 | -1 | 1 |
2n | -2 | 0 |
n | -1 | 0 |
d)Ta có:
\(\left(3-2n\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(-2n-2+5\right)⋮\left(n+1\right)\)
\(\Rightarrow5⋮\left(n+1\right)\)
Ta có bảng sau:
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
Ta có:
\(M=5+5^2+5^3+...+5^{101}\)
\(\Rightarrow M=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)+5^{101}\)
\(\Rightarrow M=30+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)+5^{101}\)
\(\Rightarrow M=30+6.5^3+...+6.5^{99}+5^{101}\) có tận cùng bằng 5
⇒c=5
Mà \(\overline{abcd}⋮25\Rightarrow\overline{cd}⋮25\Rightarrow\overline{5d}⋮25\Rightarrow d=0\)
Lại có:
\(\overline{ab}=a+b^2\Rightarrow10a+b=a+b^2\)
\(\Rightarrow10a-a=b^2-b\Rightarrow9a=b\left(b-1\right)\)
\(\Rightarrow b\left(b-1\right)⋮9\)
\(\Rightarrow\left[{}\begin{matrix}b⋮9\\\left(b-1\right)⋮9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}b=9\\\varnothing\end{matrix}\right.\)
\(\Rightarrow9a=9.8=72\Rightarrow a=8\)
Vậy \(\overline{abcd}=8950\)
Cho A = 1.1.1.....1 /2n chữ số 1 + 4.4.4...4/n chữ số 4 +1 CMR tổng sau là số chính phương