1. Tìm số nguyên n để : a. n + 5 chia hết cho n - 1 b. 2n - 4 chia hết cho n + 2 c. 6n + 4 chia hết cho 2n + 1 d. 3 - 2n chia hết cho n + 1
2. Tìm số tự nhiên có 4 chữ số abcd biết nó thỏa mãn 3 điều kiện sau : a. c là chữ số có tận cùng của số M = 5+ 5^2 + 5^3 + ...+ 5^101 b. abcd chia hết cho 25 c. ab = a + b^2
3. Tìm x,y thuộc Z biết : a. xy + 3x - 7y = 21 b. xy + 3x - 2y = 11
a)Ta có:
\(\left(n+5\right)⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1+6\right)⋮\left(n-1\right)\)
\(\Rightarrow6⋮\left(n-1\right)\)
Ta có bảng sau:
\(n-1\) | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -5 | -2 | -1 | 0 | 2 | 3 | 4 | 7 |
TM | TM | TM | TM | TM | TM | TM | TM |
b)\(\left(2n-4\right)⋮\left(n+2\right)\)
\(\Rightarrow\left(2n+4-8\right)⋮\left(n+2\right)\)
\(\Rightarrow8⋮\left(n+2\right)\)
Ta có bảng sau:
n+2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -10 | -6 | -4 | -3 | -1 | 0 | 2 | 6 |
TM | TM | TM | TM | TM | TM | TM | TM |
c)Ta có:
\(\left(6n+4\right)⋮\left(2n+1\right)\)
\(\Rightarrow\left(6n+3+1\right)⋮\left(2n+1\right)\)
\(\Rightarrow1⋮\left(2n+1\right)\)
Ta có bảng sau:
2n+1 | -1 | 1 |
2n | -2 | 0 |
n | -1 | 0 |
d)Ta có:
\(\left(3-2n\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(-2n-2+5\right)⋮\left(n+1\right)\)
\(\Rightarrow5⋮\left(n+1\right)\)
Ta có bảng sau:
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
Ta có:
\(M=5+5^2+5^3+...+5^{101}\)
\(\Rightarrow M=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)+5^{101}\)
\(\Rightarrow M=30+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)+5^{101}\)
\(\Rightarrow M=30+6.5^3+...+6.5^{99}+5^{101}\) có tận cùng bằng 5
⇒c=5
Mà \(\overline{abcd}⋮25\Rightarrow\overline{cd}⋮25\Rightarrow\overline{5d}⋮25\Rightarrow d=0\)
Lại có:
\(\overline{ab}=a+b^2\Rightarrow10a+b=a+b^2\)
\(\Rightarrow10a-a=b^2-b\Rightarrow9a=b\left(b-1\right)\)
\(\Rightarrow b\left(b-1\right)⋮9\)
\(\Rightarrow\left[{}\begin{matrix}b⋮9\\\left(b-1\right)⋮9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}b=9\\\varnothing\end{matrix}\right.\)
\(\Rightarrow9a=9.8=72\Rightarrow a=8\)
Vậy \(\overline{abcd}=8950\)