Cho a,b,c là ba số thực thỏa mãn a+b+c=0 và ab+bc+ca= -10.
Tính giá trị của biểu thức A=a^4+b^4+c^4.
Cho a,b,c là các số thực thỏa mãn:0≤a,b,c≤4 và a+b+c=6.
Tìm giá trị lớn nhất của biểu thức
P=a²+b²+c²+ab+bc+ca..
Cho các số thực a,b,c thỏa mãn \(a^2+b^2+c^2=3\) và \(a+b+c+ab+bc+ca=6\)
Tính giá trị biểu thức : A=\(\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2019}}\)
Cho a, b, c là ba số khác 0 thỏa mãn: ab/a+b=bc/b+c=ca/c+a ( với giả thiết các tỉ số đều có nghĩa) và a+b=c=1 tính giá trị của biểu thức A=abc(a2+b2+c2)/ab+bc+ca
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)
\(\Rightarrow a=b=c=\dfrac{1}{3}\)
\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)
xét ba số thực a,b,c thỏa mãn 0 ≤ a,b,c ≤ 2 và a+b+c = 3. Tìm giá trị nhỏ nhất của biểu thức : P = a3+ b3+ c3 + \(\dfrac{\left(ab+bc+ca\right)^3+8}{ab+bc+ca}\)
cho ba số a,b,c khác 0 thỏa mãn ab/a+b=bc/b+c=ca/c+a
tính giá trị của biểu thức M=ab+bc+ca/a^2+b^2+c^2
Cho a, b, c là ba số khác 0 thỏa mãn: ab/a+b=bc/b+c=ca/c+a (với giả thiết các tỉ số đều có nghĩa).
Tính giá trị của biểu thức M=ab+bc+ca / a^2+b^2+c^2
với a,b,c khác 0 ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) => \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)=>\(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\) =>\(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\) =>a=b=c => M=1
a)Cho a2+b2+c2=ab+ac+ca .cmr a=b=c
b)cho ba số a.b,c thỏa mãn a+b-c=0;a2+b2+c=10.tính a4+b4+c4
c)cho a+b+c=0 và ab+bc+ca=0 .Tính giá trị biểu thức P=(a-1)2017+(b-1)2017+(c-1)2017
d) tìm a,b,c thỏa mãn đẳng thức :a2-2a+b2+4b+4c2-4c+6=0
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1
Cho số thực a,b,c khác 0 thỏa mãn 2ab+bc+2ca=0. Hãy tính giá trị cuả biểu thức A=bc/8a^2+ca/b^2+ab/c^2
Lời giải:
\(A=\frac{(bc)^3+(2ac)^3+(2ab)^3}{8a^2b^2c^2}=\frac{(bc)^3+(2ac+2ab)^3-3.2ac.2ab(2ac+2bc)}{8a^2b^2c^2}\)
\(=\frac{(bc)^3+(-bc)^3+12a^2b^2c^2}{8a^2b^2c^2}=\frac{12}{8}=1,5\)
Cho các số thực a,b,c khác 0 thỏa mãn a+b+c=0. Tính giá trị biểu thức của H= ab/a^2+b^2-c^2+ bc/b^2+c^2-a^2+ ca/c^2+a^2-b^2