Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nam Lee
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2022 lúc 22:16

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

Do đo: ΔBAD=ΔBED

=>BA=BE và DA=DE
b: BA=BE

DA=DE

Do đó: BD là đường trung trực của AE

c: Xét tứ giác BHEA có

BH//AE

BH=AE
Do đo BHEA là hình bình hành

=>HE//AB

=>HE vuông góc với AC

d: BHEA là hìnhbình hành

nên BE cắt HA tại trung điểm của mỗi đường

=>A,O,H thẳng hàng

Nam Lee
Xem chi tiết
Nam Lee
13 tháng 12 2018 lúc 21:02

tớ nhầm đề bài , tớ chữa lại nhé

Nguyễn Lê Phước Thịnh
7 tháng 12 2022 lúc 0:19

loading...

pro moi choi
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 12 2022 lúc 8:35

loading...

Trọng Trường
Xem chi tiết
Minh khôi Bùi võ
26 tháng 3 2022 lúc 19:08

Hỏi đáp Toán
 a) 

ΔABD và ΔEBD có:
BA = BE (gt)
B1^=B2^ (BD là tia phân giác góc B)
BD là cạnh chung
⇒ΔABD=ΔEBD (c.g.c)

 

 BAD^=BED^ (hai góc tương ứng)
BAD^ =900
BED^ =900
 DE  BE

b) ΔABI và ΔEBI có:

Jamie Kelly
Xem chi tiết
nguyen thuy linh
Xem chi tiết
❊ Linh ♁ Cute ღ
30 tháng 12 2018 lúc 21:06

a) ΔABD và ΔEBD có:
BA = BE (gt)
B1ˆ=B2ˆ (BD là tia phân giác góc B)
BD là cạnh chung
⇒ΔABD=ΔEBD (c.g.c)
⇒⇒ BADˆ=BEDˆ(hai góc tương ứng)
mà BAD^ =90 độ
BEDˆ= 90 độ
 DE ⊥⊥ BE

b) ΔABI và ΔEBIcó:
BA = BE (gt)
B1ˆ=B2ˆ (gt)
BI là cạnh chung
⇒ΔABI=ΔEBI (c.g.c)
 IA = IE (hai cạnh tương ứng) (1)
Ta có: I1ˆ+I2ˆ=1800 (hai góc kề bù)
mà I1ˆ=I2ˆ (ΔABI=ΔEBI)
 I1ˆ=I2ˆ=90 độ  (2)
Từ (1) và (2) ⇒⇒ DE vuông góc với BE.

c) ΔAHE vuông tại H có góc AEH nhọn
⇒góc  AEC là góc tù
⇒⇒ AHEˆ<AECˆ
⇒⇒ AE < AC (quan hệ giữa cạnh và góc đối diện)
mà EH là hình chiếu của AE trên BC.
HC là hình chiếu của AC trên BC.
⇒⇒ EH < HC (quan hệ đường xiên và hình chiếu

Nguyễn Hoàng Vinh
1 tháng 6 2020 lúc 10:39

sao câu c loằng ngoằng thế

Khách vãng lai đã xóa
Quý Thiện Nguyễn
Xem chi tiết
The Smosh
Xem chi tiết
MINH LÊ ĐÌNH
Xem chi tiết
Lê Loan
1 tháng 5 2022 lúc 15:57

lag a ban 

Trần Tuấn Hoàng
1 tháng 5 2022 lúc 16:52

c) -△ABG và △JBG có: \(AB=BE;\widehat{ABG}=\widehat{JBG};BG\) là cạnh chung.

\(\Rightarrow\)△ABG=△JBG (c-g-c).

\(\Rightarrow\widehat{AGB}=\widehat{JGB}\) nên GB là tia phân giác góc AGE.

AE//CF \(\Rightarrow\widehat{BAE}=\widehat{AFG}\).

-△BFC cân tại B mà BG là đường cao nên BG cũng là trung tuyến.

\(\Rightarrow\)G là trung điểm CF.

-△ACF vuông tại A có: AG là trung tuyến.

\(\Rightarrow AG=FG=\dfrac{1}{2}BC\Rightarrow\)△AFG cân tại G.

\(\Rightarrow\widehat{AFG}=\widehat{FAG}\) mà \(\widehat{BAE}=\widehat{AFG}\Rightarrow\widehat{BAE}=\widehat{FAG}\).

\(\widehat{EAC}=90^0-\widehat{BAE}=90^0-\widehat{FAG}=\widehat{GAC}\).

\(\Rightarrow\)AC là tia phân giác góc EAG.

-△AEG có: 2 đg phân giác AC và GB cắt nhau tại D.

\(\Rightarrow\)D là điểm cách đều 3 cạnh của △AEG (hay còn gọi là giao của 3 đg phân giác, tâm đường tròn nội tiếp tam giác).

Trần Tuấn Hoàng
1 tháng 5 2022 lúc 16:57

d) -Cho mình xin sử dụng t/c của lớp 8, mình sẽ c/m sau (đường trung bình của tam giác).

\(BM+BN=BC\) mà \(BM+MF=BF=BC\Rightarrow MF=BN\).

-Gọi H là trung điểm BC. Qua M kẻ đường thẳng song song với IH cắt BC tại J.

-△NMJ có: IH//MJ, I là trung điểm MN.

\(\Rightarrow\)H là trung điểm NJ nên \(NH=HJ\).

\(CJ=CH-HJ=BH-NH=BN\)

\(\Rightarrow CJ=MF\Rightarrow BM=BJ\Rightarrow\)△MBJ cân tại B.

\(\Rightarrow\widehat{BMJ}=\dfrac{180^0-\widehat{MBJ}}{2}\) mà \(\widehat{BAE}=\dfrac{180^0-\widehat{MBJ}}{2}\) 

\(\Rightarrow\widehat{BMJ}=\widehat{BAE}\Rightarrow\)MJ//AE.

-Ta dễ dàng thấy rằng điểm A,D,E cố định \(\Rightarrow\)AE, MJ cố định.

\(\Rightarrow\)Trung điểm I của MN luôn nằm trên 1 đg thẳng cố định (đg thẳng MJ).