Xác định m,n để 2 đường thẳng sau cắt nhau tại một điểm trên trục tung
y=m.x+m-1
y=(2m+2).x+2
Định m để:
a) Hai đường thẳng (d): y=2x-1 +2m và (d'): y=-x-2m cắt nhau tại 1 điểm có hoành độ dương
b) Hai đường thẳng (D1): mx+y=2m và (D2): (2m+1)x+my=2m^2 + m -1 cắt nhau tại 1 điểm trên trục tung. Tìm điểm đó
1. tìm m để các đường thẳng y= 2x + m và y= x - 2m + 3 cắt nhau tại một điểm nằm trên trục tung
2. tìm tọa độ giao điểm của 2 đường thẳng trên khi m=1
1. Giả sử hai đường thẳng cắt nhau tại điểm M(x0; y0) trên trục tung
=> x0 = 0 => Thay toạ độ của M vào 2 đường thẳng ta có: (d): y0 = m và (d'): y0 = 3 - 2m
Xét phương trình hoành độ giao điểm: m = 3 - 2m ⇔ 3m = 3 ⇔ m = 1
=> Với m = 1 thì 2 đường thẳng cắt nhau tại điểm trên trục tung
2. Với m = 1 => y0 = 1 => 2 đường thẳng cắt nhau tại điểm M(0; 1)
a, A = b, 2, Cho hai đường thẳng (d1): y = (2m-5).x – m – 2 và (d2): y = - 3 – x. Tìm m để hai đường thẳng cắt nhau tại một điểm nằm trên trục tung.
PTHDGD: \(\left(2m-5\right)x-m-2=-3-x\)
2 đt cắt tại 1 điểm trên trục tung nên x=0
\(\Leftrightarrow-m-2=-3\Leftrightarrow m=1\)
Câu 2 (2,0 điểm): a) Tìm m để các đường thẳng y = (2m-1)x – 3 và y=mx+m2- 4m cắt nhau tại một điểm nằm trên trục tung.
để 2 đường thẳng y = (2m-1)x – 3 và y=mx+m^2- 4m cắt nhau tại một điểm nằm trên trục tung.<=>2m-1\(\ne\)m(*) ; -3=m^2-4m(**)
từ(*)=>2m-m≠1<=>m≠1
từ (**)
=> m^2-4m+3=0
<=>(m-1)(m-3)=0<=>m=1(loại) hoặc m=3(thỏa mãn)
vậy m=3 thì đường thẳng y = (2m-1)x – 3 và y=mx+m2- 4m cắt nhau tại một điểm nằm trên trục tung.
Phương trình hoành độ giao điểm của hai đường thẳng đã cho:
\(\left(2m-1\right)x-3=mx+m^2-4m\)
Do hai đường thẳng này cắt nhau tại một điểm trên trục tung nên giao điểm của chúng có hoành độ bằng 0
\(\Rightarrow m^2-4m=-3\)
\(\Leftrightarrow m^2-4m+3=0\)
Do \(a+b+c=1+\left(-4\right)+3=0\)
\(\Rightarrow m=1;m=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Vậy \(m=1;m=3\) thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung
1/.TÌm m để 2 đường thẳng \(y=2x-\left(2m-1\right)\)và \(y=3x+5m-4\)cắt nhau tại 1 điểm trên trục tung.
2/.TÌm m để 2 đường thẳng y=5x+1-2m và y=x-m-4 cắt nhau tại 1 điểm trên trục hoành.
1) Hai đường thẳng cắt nhau tại một điểm trên trục tung khi \(\int^{a\ne a^,}_{b=b^,}\Rightarrow\int^{2\ne3}_{5m-4=-2m+1}\)
=> 7m=5 => m= 5/7
2) y=5x+1-2m : Với y=0 =>5x +1-2m =0 => x =(2m-1)/5
y =x - m -4 : Với y =0 => x= m + 4
Để hai đường thẳng cắt nhau tại một điểm trên trục hoành thì:\(\int^{1\ne5}_{\frac{2m-1}{5}=m+4}\)
=> 2m-1=5m+20 => m=-7
Tìm m để các đường thẳng y=2x+m và y=x-2m+3 cắt nhau tại một điểm nằm trên trục tung
(Điểm nằm trên trục tung có hoành độ bằng 0)
\(PTHDGD:2x+m=x-2m+3\)
Mà 2 đt cắt tại 1 điểm trên trục tung nên \(x=0\)
\(\Leftrightarrow m=3-2m\\ \Leftrightarrow m=1\)
Tìm m để 2 đường thẳng (d): y = 4x + m - 4 và ((d'): y = 2x + 2m - 3 cắt nhau tại một điểm trên trục tung
Giả sử 2 đường thẳng (d), (d') cắt nhau tại \(M\left(x_0;y_0\right)\) trên trục tung
\(\Rightarrow x_0=0\)
Thay tọa độ của M và 2 đường thẳng ta có:
\(\left(d\right):y=m-4\) và \(\left(d'\right):y=2m-3\)
PT hoành độ gia điểm: \(m-4=2m-3\Leftrightarrow m=-1\)
Vậy...
Cho y=(2m+)x+n.Tìm m,n để đường thẳng cắt trục tung tại điểm y=1-2 căn 2 và cắt trục hoành tại điểm x =1
Giải thích các bước giải:
a/ Thế x=-1 và y=2 vào (d) ta được:
2=(m-2).(-1)+n
⇔ -(m-2)+n=2
⇔ -m+2+n=2
⇔ -m+n=0
⇔ n-m=0 (1)
Thế x=3 và y=-4 vào (d) ta được:
-4=(m-2).3+n
⇔ 3m-6+n=-4
⇔ n+3m=2 (2)
Từ (1) và (2) ta có hệ phương trình:
{n−m=0n+3m=2{n−m=0n+3m=2
⇔ {n=mm+3m=2{n=mm+3m=2
⇔ {n=m4m=2{n=m4m=2
⇔ {n=mm=1/2(nhận){n=mm=1/2(nhận)
⇔ {n=m=1/2m=1/2{n=m=1/2m=1/2
Vậy m=n=1/2.
b/ (d) cắt trục tung tại điểm có tung độ bằng 1-√2
⇒ x=0 ; y=1-√2 (1)
(d) cắt trục hoành tại điểm có hoành độ bằng 2+√2
⇒ x=2+√2 ; y=0 (2)
Thế (1) vào (d) ta được:
1-√2=(m-2).0+n
⇔ n=1-√2
Thế (2) ; n=1-√2 vào (d) ta được:
0=(m-2).(2+√2)+(1-√2)
⇔ 2m+√2m-4+√2+1-√2=0
⇔ 2m+√2m-3=0
⇔ (2+√2)m=3
⇔ m=6-3√2/2 (nhận)
Vậy n=1-√2 ; m=6-3√2/2.
Cho hàm số : \(y=\sqrt{2m-5}\left(x-2\right)\) .
Xác định m để đồ thị của hàm số trên là một đường thẳng. Gọi (d) là đường thẳng \(y=\sqrt{2x-5}\left(x-2\right)\) .
a, Xác định m để đường thẳng (d) vuông góc với đường thẳng y = -2x + 5
b, Xác định m để đường thẳng (d) song song với đường thẳng y = x + 4
c, Xác định m để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng -4.