cho tam giác abc I là tâm đường tròn nội tiếp cmr BIC=BAC+90
cho tam giác ABC nội tiếp đường tròn (O) đường kính BC. Tia phân giác của hóc BAC cắt đường tròn tại D.
A. Chứng tỏ OD vuông góc BC
B. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Tính góc BIC
Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn ( O, R) , AD là đường cao của tam giác ABC và AM là đường kính của đường tròn (O), gọi E là hình chiếu của B trên AM. a) CMR : góc ACM = 90° và BAC=MAC b) CMR : Tứ giác ABDE nội tiếp c) CM : DE // MC
a: góc ACM=1/2*sđ cung AM=90 độ
b: góc ADB=góc AEB=90 độ
=>ABDE nội tiếp
cho tam giác nhọn ABC nội tiếp đường tròn tâm O, gọi H là trực tâm, I là tâm đường tròn nội tiếp tam giác
a) AI là tia phân giác góc OAH
b) cho góc BAC= 60 độ , chứng minh IO=IH
Cho tam giác ABC nhọn nội tiếp (O) có góc BAC =60, H là trực tâm. Goi I là tâm đường tròn nội tiếp tam giác ABC. Chung minh IO =IH
Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc với AB,AC ở D,E. Gọi K là giao điểm của AI với (I). Cmr: K là tâm của đường tròn nội tiếp tam giác ADE.
cho tam giác ABC nhọn nội tiếp đường tròn O . Gọi H là trực tâm , I là tâm đường tròn nội tiếp tam giác
a) CM : AI là phân giác góc OAH
b) Cho góc BAC =60 độ . CM : IO =IH
cho tam giác ABC cân tại A, I là giao điểm các đường phân giác trong tam giác.
a, CM: AC là tiếp tuyến của đường tròn tâm O ngoại tiếp tam giác BIC.
b, gọi H là trung điểm của BC. IK là đường kính của đường tròn tâm O. CMR: AI.HK=AK.HI
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Gọi H là trực tâm, I là tâm đường tròn nội tiếp tam giác.
a) Chứng minh rằng AI là tia phân giác của góc OAH.
b) Cho goc BAC = 60,, chứng minh rằng IO = IH