Cho tam giác ABC có AB=AC. Lấy điểm D trên cạnh AB, điểm E trên cạch AC sao cho Ad=Ae
a) chứng minh rằng BE= CD
b) Gọi O là giao điểm của Be và CD. Chứng minh AO là tia phân giác của góc A
Giúp tôi với, cảm ơn
Cho tam giác ABC có AB = AC. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE a) Chứng minh rằng BE = CD b) Gọi O là giao điểm của BE và CD, chứng minh ao là tia phân giác của góc bac
a: Xét ΔABE và ΔACD có
AB=AC
\(\stackrel\frown{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
cho tam giác ABC có AB = AC. Lấy điểm D trên cạnh AB, lấy điểm E trên cạnh AC sao cho AD=AE
a) Chứng minh : BE = CD
b) Gọi O là giao điểm của BE và CD. Chứng minh rằng ΔBOD = ΔCOE
c) Chứng minh: AO là tia phân giác của góc BAC
Cho tam giác ABC có AB= AC. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE
a) Chứng minh BE = CD
b) Gọi O là giao điểm của BE và CD. Chứng minh rằng tam giác BOD = tam giác COE
c) Chứng minh AO là tia phân giác góc A
d) AO cắt BC tại H, chứng minh AH vuông góc BC
AI GIẢI NHANH VÀ ĐÚNG MIK SẼ TICK
Cm: a) Xét t/giác ABE và t/giác ACD
có: AB = AC (gt)
\(\widehat{A}\) :chung
AE = AD (gt)
=> t/giác ABE = t/giác ACD (c.g.c)
=> BE = CD (2 cạnh t/ứng)
b)Ta có: AD + DB = AB
AE + EC = AC
mà AD = AE (gt) ; AB = AC (gt)
=> BD = EC
Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)
\(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)
mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)
=> \(\widehat{BDC}=\widehat{BEC}\)
Xét t/giác BOD và t/giác COE
có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)
BD = EC (cmt)
\(\widehat{BDO}=\widehat{OEC}\) (cmt)
=> t/giác BOD = t/giác COE (g.c.g)
c) Xét t/giác ABO và t/giác ACO
có: AB = AC (gT)
OB = OC (vì t/giác BOD = t/giác COE)
AO : chung
=> t/giác ABO = t/giác ACO (c.c.c)
=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)
=> AO là tia p/giác của \(\widehat{A}\)
d) Xét t/giác ABH và t/giác ACH
có: AB = AC (gt)
\(\widehat{BAH}=\widehat{CAH}\)(cmt)
AH : chung
=> t/giác ABH = t/giác ACH (c.g.c)
=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)
Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)
=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)
cho tam giác ABC có AB = AC . Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh rằng :
a, BE = CD
b, MDB = MEC
c, Am là p/g của góc BAC
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
- GIÚP TÔI VỚI :))
( Vẽ hình luôn thì càng tốt ạ ) - Cảm ơn
Cho Tam giác ABC có AB = AC
Trên cạnh AD lấy điểm D
Trên cạnh BC lấy điểm E Sao cho
AT= AE
a) Chứng minh CD = BE
b) Gọi O là giao điểm của BE và CD
Chứng minh Tam giác BDO = Tam giác CEO
c) Chứng minh : AO là tia phân giác của góc A và AO vuông góc với BC
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔDBC và ΔECB có
DB=EC
DC=EB
CB chung
Do đó:ΔDBC=ΔECB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=CE
\(\widehat{OBD}=\widehat{OCE}\)
Do đó: ΔODB=ΔOEC
c: Ta có: ΔODB=ΔOEC
nên OB=OC
Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC
Ta có: ΔABC cân tại A
mà AO là đường phân giác
nên AO là đường cao
Cho tam giác ABC có AB = AC. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE.Gọi O là giao điểm của BE và CD. Chứng minh AO là tia phân giác của góc A
∆ABC có:
AB = AC (gt)
⇒ ∆ABC cân tại A
⇒ ∠ABC = ∠ACB
⇒ ∠DBC = ∠ECB
Do AB = AC (gt)
AD = AE (gt)
⇒ BD = AB - AD = AC - AE = CE
Xét ∆DBC và ∆ECB có:
DB = EC (cmt)
∠DBC = ∠ECB (cmt)
BC là cạnh chung
⇒ ∆DBC = ∆ECB (c-g-c)
⇒ ∠BDC = ∠CEB (hai góc tương ứng)
⇒ ∠BDO = ∠CEO
Do ∆DBC = ∆ECB (cmt)
⇒ ∠BCD = ∠CBE (hai góc tương ứng)
Mà ∠ACB = ∠ABC (cmt)
⇒ ∠ECO = ∠ACB - ∠BCD
= ∠ABC - ∠CBE
= ∠DBO
Xét ∆BOD và ∆COE có:
∠DBO = ∠ECO (cmt)
BD = CE (cmt)
∠BDO = ∠CEO (cmt)
⇒ ∆BOD = ∆COE (g-c-g)
⇒ OD = OE (hai cạnh tương ứng)
Xét ∆ADO và ∆AEO có:
AD = AE (gt)
AO là cạnh chung
OD = OE (cmt)
∆ADO = ∆AEO (c-c-c)
⇒ ∠DAO = ∠EAO (hai góc tương ứng)
⇒ AO là tia phân giác của ∠DAE
Hay AO là tia phân giác của ∠BAC
Cho tam giác ABC . Có AB = AC . Lấy điểm D trên cạnh AB . Lấy điểm E trên cạnh AC sao cho AD = AE a) Chứng minh BE = CD b) Gọi O là giao điểm của BE và CD . Chứng minh rằng tam giác BOD bằng tam giác COE
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE. Gọi M là giao điểm của BE và CD
a, CM: BE=CD
b, Chứng minh tam giác BMD=Tam giác CME
c, Chứng minh AM là phân giác của góc BMC
a: Xét ΔAEBvà ΔADC có
AE=AD
góc A chung
AB=AC
=>ΔAEB=ΔADC
=>BE=CD
b: Xét ΔMDB và ΔMEC có
góc MDB=góc MEC
DB=EC
góc MBD=góc MCE
=>ΔMDB=ΔMEC
c: Xét ΔAMB và ΔAMC có
MA chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
`@`` \text {dnv}`
`a,`
Xét `\Delta ABE` và `\Delta ACD`:
`\text {AB = AC (Tam giác ABC cân tại A)}`
`\hat {A}`` \text {chung}`
`\text {AD = AE (gt)}`
`=> \Delta ABE = \Delta ACD (c-g-c)`
`-> \text {BE = CD (2 cạnh tương ứng)}`
`b,`
Vì `\Delta ABE = \Delta ACD (a)`
$ -> \widehat {ACD} = \widehat {ABE} (\text {2 góc tương ứng})$
`->` $\widehat {ADC} = \widehat {AEB} (\text {2 góc tương ứng})$
Ta có: \(\left\{{}\begin{matrix}\widehat{ADC}+\widehat{BDC}=180^0\\\widehat{AEB}+\widehat{CEB}=180^0\end{matrix}\right.\)
$\widehat {ADC} = \widehat {AEB}$
`->` $\widehat {CEB} = \widehat {BDC}$
Ta có:\(\left\{{}\begin{matrix}\text{AB = AD + DB}\\\text{AC = AE + EC}\end{matrix}\right.\)
Mà: \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{AD = AE}\end{matrix}\right.\)
`-> \text {BD = EC}`
Xét `\Delta BMD` và `\Delta CME`:
\(\widehat{\text{DBM}}=\widehat{\text{ECM}}\left(\text{CMT}\right)\)
\(\text{BD = CE (CMT)}\)
\(\widehat{\text{BDM}}=\widehat{\text{CEM}\text{ }}\text{ }\left(\text{CMT}\right)\)
`=> \Delta BMD = \Delta CME (g-c-g)`
`c,` Đề có phải là "Chứng minh AM là phân giác của góc BAC" ?
Vì `\Delta BMD = \Delta CME (b)`
`-> \text {MB = MC (2 cạnh tương ứng)}`
Xét `\Delta BAM` và `\Delta CAM`:
`\text {AB = AC} (\Delta ABC \text {cân tại A})`
`\text {AM chung}`
`\text {MB = MC (CMT)}`
`=> \Delta BAM = \Delta CAM (c-c-c)`
`->` $\widehat {BAM} = \widehat {CAM} (\text {2 góc tương ứng})$
`-> `\(\text{AM là tia phân giác của }\widehat{\text{BAC}}\)
- GIÚP TÔI VỚI :))
( Vẽ hình luôn thì càng tốt ạ ) - Cảm ơn
Cho Tam giác ABC có AB = AC
Trên cạnh AD lấy điểm D
Trên cạnh BC lấy điểm E Sao cho
AT= AE
a) Chứng minh CD = BE
b) Gọi O là giao điểm của BE và CD
Chứng minh Tam giác BDO = Tam giác CEO
c) Chứng minh : AO là tia phân giác của góc A và AO vuông góc với BC
a) Xét tam giác ADC và tam giác AEB có:
AC = AB (GT)
Góc A chung
AD = AE (GT)
=> Tam giác ADC bằng tam giác AEB ( c - g - c )
=> DC = EB ( hai cạnh tương ứng )
b) Ta có
AB = AC ( GT )
AD = AE ( GT )
=> AB - AD = AC - AE
=> BD = CE
Từ tam giác BDO = tam giác CEO
=> Góc ABE = góc ACD ( hai góc tương ứng )
=> Góc ADC = góc AEB ( hai góc tương ứng )
Ta có
Góc ADC + góc CDB = 180 độ ( kề bù )
Góc AEB + góc BEC = 180 độ ( kề bù )
=> Góc ADC + góc CDB = Góc AEB + góc BEC = 180 độ
=> Góc CDB = góc BEC
Xét tam giác BDO và tam giác CEO có
Góc ABE = góc ADC ( CMT)
BD = CE ( CMT )
Góc CDB = góc BEC ( CMT )
=> Tam giác BDO = tam giác CEO ( g - c - g )
c) Từ tam giác BDO = tam giác CEO
=> BO = CO ( hai cạnh tương ứng )
Xét tam giác AOB và tam giác AOC có
AB = AC ( GT )
BO = CO ( CMT )
AO chung
=> Tam giác AOB = tam giác AOC ( c - c - c )
=> Góc BAO = CAO ( hai góc tương ứng )
=> AO là phân giác của góc A
Ta có:
Tam giác ABC có AB = AC (GT)
=> Tam giác ABC là tam giác cân
Mà có AO là phân giác của góc A
=> AO cũng là đường cao của tam giác ABC
=> AO vuông góc với BC