Chứng minh \(n^7+34n+\text{5}\) không là số chính phương
Chứng minh rằng \(13^n.2+7^n.5+26\) (n∈N) không là số chính phương
chứng minh rằng :
a) S = 1 + 3 +5 +7 + ... + 2n - 1 với n thuộc N* là số chính phương .
b) S = 2 +4 +6 + ... + 2n với n thuộc N* không phải là số chính phương
chứng minh 13^n *2 + 7^n *5 +26 không phải là số chính phương
với n nguyên dương
giúp mình với
ra xét các trường hợp của n đi rồi thử
Chứng minh rằng:
a) A = abc + bca + cba không là số chính phương.
b) ababab không là số chính phương.
a) A = abc + bca + cab
=> A = ( 100a + 10b + c ) + ( 100b + 10c + a)+ ( 100c + 10a + b)
=> A = 100a + 10b + c + 100b + 10c + a + 100c + 10a +b
=> A = 111a + 111b + 111c
=> A = 111( a+b+c)
vì 0< a+b+c ≤ 27 nên a + b + c không chia hết cho 37
mặt khác ( 3 ; 37)=1 nên 3( a+b+c) không chia hết cho 37
=> A không phải là số chính phương
b)
ababab=ab.10101
để ab là sô chính phương thì ab = 10101
mà ab là số có 2 chứ số
⇒ ababab không phải là số chính phương
no la b 3 ban oi
Bài 1: Chứng minh một số tự nhiên gôm 27 chữ số 3 và 49 chứ số 7 đều chính phương
Bài 2: Chứng minh
A=12+22+32+...+562 không là số chính phương
B=1+3+5+7+...+n là số chính phương
Bài 3: Tìm hai số tự nhiên k và n sao cho k2=2006+n2
Bài 1 : Các số sau có phải chính phương không?
a, 3 + 32 + 33 + ... + 320
b, 100!
c,20012001
d, abab
b, abcabc
c, ababab
Bài 2 : Chứng minh rằng tổng bình phương của hai số lẻ bất kì không phải số chính phương.
Bài 3 : Chứng minh rằng 192n + 5n + 2000 với n \( \in\) ℕ không phải số chính phương.
Bài 4 : Chứng minh rằng 1 + 5m + 8n với m,n \(\in\) ℕ không phải số chính phương.
Bài 1:
a ) Ta có : A là tổng các số hạng chia hết cho 3 => A \(⋮\)3
A có 3 không chia hết cho 9 => A không chia hết cho 9
=> A \(⋮\)3 nhưng không chia hết cho 9
=> A không phải là số chính phương
Bài 2:
Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)
Có : A = (2k+1)^2+(2q+1)^2
= 4k^2+4k+1+4q^2+4q+1
= 4.(k^2+k+q^2+q)+2
Ta thấy A chia hết cho 2 nguyên tố
Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4
=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2
=> A ko là số chính phương
=> ĐPCM
chứng minh rằng với n lẻ và n thuộc n* thì 7 n+ 24 không là số chính phương
Do n lẻ \(\Rightarrow n=2k+1\)
Đặt \(a=7^n+24=7^{2k+1}+24=7.49^k+24\)
Do \(\left\{{}\begin{matrix}49\equiv1\left(mod4\right)\\7\equiv3\left(mod4\right)\\24\equiv0\left(mod4\right)\end{matrix}\right.\) \(\Rightarrow7.49^k+24\equiv3\left(mod4\right)\)
Mà các số chính phương chia 4 chỉ có các số dư 0 hoặc 1
\(\Rightarrow a\) không thể là SCP hay \(7^n+24\) ko là SCP với mọi số tự nhiên lẻ n
Giả sử n là số tựnhiên thỏa mãn n(n+1) không chia hết cho 7. Chứng minh 4n^3−5n−1 không là số chính phương
chứng minh 13^n *2 + 7^n *5 +26 không phải là số chính phương
với n nguyên dương
giúp mình với