Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hày Cưi
Xem chi tiết
zZz Công serenity zZz
Xem chi tiết
nguyễn hương giang
Xem chi tiết
romeo bị đáng cắp trái t...
8 tháng 4 2016 lúc 18:06

ra xét các trường hợp của n đi rồi thử

Trịnh Thuý Hiền
Xem chi tiết
Đỗ Gia Hân
29 tháng 6 2021 lúc 17:51

a) A = abc + bca + cab 

=> A = ( 100a + 10b + c ) + ( 100b + 10c + a)+ ( 100c + 10a + b)

=>  A = 100a + 10b + c + 100b + 10c + a + 100c + 10a +b

=>  A = 111a + 111b + 111c

=> A = 111( a+b+c)

vì 0< a+b+c ≤ 27 nên a + b + c không chia hết cho 37

mặt khác ( 3 ; 37)=1 nên 3( a+b+c) không chia hết cho 37

=> A không phải là số chính phương

b) 

ababab=ab.10101

để ab là sô chính phương thì ab = 10101

mà ab là số có 2 chứ số

⇒ ababab không phải là số chính phương

Khách vãng lai đã xóa
phạm hoàng việt
29 tháng 6 2021 lúc 17:48

no la b 3 ban oi
 

Khách vãng lai đã xóa
Lê Linh An
Xem chi tiết
Bùi Khánh Linh
Xem chi tiết
Nguyễn Viết Ngọc
26 tháng 8 2019 lúc 13:53

Bài 1:

a ) Ta có :  A là tổng các số hạng chia hết cho 3 => A \(⋮\)3                            

                  A có 3 không chia hết cho 9 => A không chia hết cho 9

=>  A \(⋮\)3 nhưng không chia hết cho 9

=> A không phải là số chính phương

Bài 2:

Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)

Có : A = (2k+1)^2+(2q+1)^2

           = 4k^2+4k+1+4q^2+4q+1

           = 4.(k^2+k+q^2+q)+2

Ta thấy A chia hết cho 2 nguyên tố

Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4

=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2

=> A ko là số  chính phương

=> ĐPCM

Ngọc Vũ
Xem chi tiết

Do n lẻ \(\Rightarrow n=2k+1\)

Đặt \(a=7^n+24=7^{2k+1}+24=7.49^k+24\)

Do \(\left\{{}\begin{matrix}49\equiv1\left(mod4\right)\\7\equiv3\left(mod4\right)\\24\equiv0\left(mod4\right)\end{matrix}\right.\) \(\Rightarrow7.49^k+24\equiv3\left(mod4\right)\)

Mà các số chính phương chia 4 chỉ có các số dư 0 hoặc 1

\(\Rightarrow a\) không thể là SCP hay \(7^n+24\) ko là SCP với mọi số tự nhiên lẻ n

Đối tác
Xem chi tiết
nguyễn hương giang
Xem chi tiết