Có 6 nam và 3 Nữ xếp thành một hàng số cách sắp xếp để nữ không đứng cạnh nhau là
Một tổ học sinh có 6 nam và 3 nữ đƣợc yêu cầu xếp thành một hàng ngang. Số cách xếp sao cho không có 2 bạn nữ nào đứng cạnh nhau là
Xếp 6 bạn nam và 4 bạn nữ thành một hàng dọc một cách ngẫu nhiên
Hãy tính xác xuất
A " Bốn bạn nữ luôn đứng cạnh nhau "
B " Không có hai bạn nữ nào đứng cạnh nhau "
C " Nam nữ đứng xen kẽ "
D " Xếp theo từng phái "
a.
Xếp 4 bạn nữ cạnh nhau: \(4!\) cách
Coi 4 bạn nữ là 1 bạn, xếp với 6 bạn nam: \(7!\) cách
Theo quy tắc nhân ta có: \(4!.7!\) cách
b.
Xếp 6 bạn nam: \(6!\) cách
6 bạn nam tạo thành 7 khe trống, xếp 4 nữ vào 7 khe trống này: \(C_7^4\) cách
\(\Rightarrow6!.C_7^4\) cách
c. Do có 6 nam và 4 nữ nên ko thể tồn tại cách xếp xen kẽ nam nữ (luôn có ít nhất 2 nam đứng cạnh nhau)
d.
Xếp 4 nữ cạnh nhau: \(4!\) cách
Xếp 6 nam cạnh nhau: \(6!\) cách
Hoán vị nhóm nam và nữ: \(2!\) cách
\(\Rightarrow4!.6!.2!\) cách
Hỏi có bao nhiêu cách sắp xếp 3 bạn nam và 3 bạn nữ thành một hàng sao cho 3 bạn nữ đứng ngay cạnh nhau và bạn nữ Ashley đứng giữa hai bạn nữ còn lại
Xét hàng ngang gồm 6 vị trí như sau: _ _ _ _ _ _
Ta xem 3 bạn nữ đứng cạnh nhau như 1 nhóm thì có 4 cách xếp nhóm này. Hơn nữa cứ mỗi vị trí như vậy lại có 2 cách xếp các thành viên trong nhóm. (Do bạn nữ Ashley phải đứng ở giữa).
3 vị trí còn lại thì sẽ có \(1.2.3=6\) cách sắp xếp các bạn nam.
Do đó có tất cả \(4.2.6=48\) cách xếp thỏa mãn yêu cầu bài toán.
một tổ có 4 em nữ và 5 em nam xếp thành 1 hàng dọc .hỏi có bao nhiêu cách sắp xếp sao cho hai em nữ A và B đứng cạnh nhau còn các em nữ còn lại k đứng cạnh nhau cũng k đứng cạnh A;B
MỘT nhóm có 10 người học sinh gồm 7 nam 3 nữ. Hỏi có bao nhiêu cách sắp xếp 10 học sinh đó thành một hàng ngang sao cho a) Ba học sinh nữ đứng cạnh nhau b) Ba học sinh nữ không đứng cạnh nhau
a: Coi 3 bạn nữ như 1 người
Số cách xếp là:
\(8!\cdot3!\)(cách)
b: Số cách xếp là:
\(10!-8!\cdot3!\left(cách\right)\)
Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp sao cho 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?
A. 118540800
B. 152409600
C. 12700800
D. 3628800
Số cách chọn 2 nam đứng ở đầu và cuối là .
Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là .
Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là:
Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là:
Chọn D.
Một nhóm học sinh gồm 5 nam và 5 nữ xếp thành một hàng ngang. Tính số cách xếp để cho học sinh nam và học sinh nữ đứng cạnh nhau:
A. 6!
B. 12!
C. 2 . ( 5 ! ) 2
D. ( 5 ! ) 2
Số dãy có học sinh nam đứng đầu và xếp nam nữ xen kẽ nhau là: 5.5.4.4.3.3.2.2.1.1= ( 5 ! ) 2
Tương tự, số dãy học sinh nữ đứng đầu và xếp nam nữ xen kẽ nhau là: (5!)2. Vậy có tất cả ( 5 ! ) 2 + ( 5 ! ) 2 = 2 . ( 5 ! ) 2 cách xếp nam, nữ đứng xen kẽ thành một hàng ngang
Chọn C
xếp bốn nam và 4 nữ thành một hàng dọc. hỏi có bao nhiêu cách xếp sao cho không có nam nào đứng cạnh nhau
Xếp ngẫu nhiên 6 học sinh nam và 2 học sinh nữ thành một hàng ngang. Xác suất để 2 học sinh nữ không đứng cạnh nhau bằng
A. 4 7
B. 5 7
C. 9 11
D. 3 4
Xếp ngẫu nhiên 6 học sinh nam và 2 học sinh nữ thành một hàng ngang. Xác suất để 2 học sinh nữ không đứng cạnh nhau bằng
A.
B.
C.
D.
Đáp án D
Số cách xếp 2 bạn nữ là
Số cách xếp 2 bạn nữ đứng cạnh nhau là
Xác suất 2 bạn nữ đứng cạnh nhau là
Xác suất 2 bạn nữ không đứng cạnh nhau là