Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vuong hien duc
Xem chi tiết
vũ tiền châu
12 tháng 6 2018 lúc 8:16

Ta có B=\(\left|x-2\right|+\left|x-4\right|+\left|x-3\right|=\left|x-2\right|+\left|4-x\right|+\left|x-3\right|\ge\left|x-2+4-x\right|+\left|x-3\right|=2+\left|x-3\right|\ge2\)

Dấu = xảy ra <=> x=3

c) Ta có C=\(\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|=4\)

Dấu = xảy ra <=> \(2\le x\le3\)

^_^

Trần Minh Hoàng
12 tháng 6 2018 lúc 9:02

b) Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge x-2\\\left|x-3\right|\ge0\\\left|x-4\right|=\left|4-x\right|\ge4-x\end{cases}}\)

\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge\left(x-2\right)+\left(4-x\right)\)

\(\Rightarrow B\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2\ge0\\x-3=0\\4-x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)

Vậy, MinP \(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)

Đạt
Xem chi tiết
Võ Đông Anh Tuấn
16 tháng 11 2016 lúc 10:07

\(\frac{x^2+x+1}{x^2+2x+1}=1-\frac{x}{\left(x+1\right)^2}\)

\(=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}=\left[\frac{1}{4}-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\right]+\frac{3}{4}\)

\(=\left(\frac{1}{2}-\frac{1}{x+1}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow P\ge\frac{3}{4}\)

Vậy \(Max_P=\frac{3}{4}\Leftrightarrow x=1\)

Nguyen Thi Thanh Thao
Xem chi tiết
Đặng Quỳnh Ngân
9 tháng 11 2016 lúc 16:21

biết mà ko biết cách trình bày

Nguyễn Ngọc Ánh
Xem chi tiết
Lê Ngọc Lan Khuê
16 tháng 10 2017 lúc 19:46

bằng 2 chắc chắn

Hồ Đỗ Hải Tú
Xem chi tiết
Quỳnh
10 tháng 6 2020 lúc 19:40

Bài làm

a) Ta có: 

\(P=\left(\frac{x+3}{x-2}+\frac{x+2}{3-x}+\frac{x+2}{x^2-5x+6}\right):\left(\frac{1-x}{x+1}\right)\)

\(P=\left(\frac{x+3}{x-2}+\frac{x+2}{3-x}+\frac{x+2}{\left(x^2-3x\right)-\left(2x-6\right)}\right).\left(\frac{x+1}{1-x}\right)\)

\(P=\left(\frac{x+3}{x-2}+\frac{x+2}{3-x}+\frac{x+2}{x\left(x-3\right)-2\left(x-3\right)}\right).\left(\frac{x+1}{1-x}\right)\)

\(P=\left(\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right).\left(\frac{x+1}{1-x}\right)\)

\(P=\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right).\left(\frac{x+1}{1-x}\right)\)

\(P=\left[x^2-9-\left(x^2-4\right)+x+2\right].\left(\frac{x+1}{1-x}\right)\)

\(P=\left(x^2-9-x^2+4+x+2\right)\left(\frac{x+1}{1-x}\right)\)

\(P=\frac{\left(x-3\right)\left(x+1\right)}{1-x}\)

\(P=\frac{x^2-3x+x-3}{1-x}\)

\(P=\frac{x^2-2x-3}{1-x}\)

\(P=\left(x^2-2x-3\right):\left(1-x\right)\)

b) Để P = 3P.

<=> \(P=3P=\left(x^2-2x-3\right):\left(1-x\right)=3\left(x^2-2x-3\right):\left(1-x\right)\)

<=> \(\left(x^2-2x-3\right):\left(1-x\right)=3\left(x^2-2x-3\right):\left(1-x\right)\)

<=> ( x2 - 2x - 3 ) : ( 1 - x ) - 3( x2 - 2x - 3 ) : ( 1 - x ) = 0

<=> ( x2 - 2x - 3 ) : [ 1 - x - 3( 1 - x ) ] = 0

<=> ( x2 - 2x - 3 ) = 0 . ( 1 - x - 3 + x )

<=> x2 - 2x - 3 = 0

<=> x2 - 3x + x - 3 = 0

<=> x( x - 3 ) + ( x - 3 ) = 0

<=> ( x + 1 )( x - 3 ) = 0

<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)

Vậy x = -1 hoặc x = 3 thì P = 3P 

Khách vãng lai đã xóa
ngoc tram
Xem chi tiết
ST
28 tháng 7 2018 lúc 21:30

\(C=\frac{30}{4x-4x^2-6}=\frac{-30}{4x^2-4x+6}=\frac{-30}{\left(2x-1\right)^2+5}\)

Vì \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+5\ge5\Rightarrow\frac{1}{\left(2x-1\right)^2+5}\le\frac{1}{5}\Rightarrow C=\frac{-30}{\left(2x-1\right)^2+5}\ge\frac{-30}{5}=-6\)

Dấu "=" xảy ra khi x=1/2

Vậy Cmin=-6 khi x=1/2

ST
28 tháng 7 2018 lúc 21:33

\(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)

Vì \(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)

\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)

\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)

\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)

Dấu "=" xảy ra khi x=y=10

Vậy Emax = 100/201 khi x=y=10

Doraemon
31 tháng 8 2018 lúc 11:01

Ta có: \(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)

\(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)

\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)

\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)

\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)

Dấu "=" xảy ra khi \(x=y=10\)

Vậy Emax\(=\frac{100}{201}\)khi \(x=y=10\)

Phạm Thanh Phương
Xem chi tiết
le vi dai
Xem chi tiết
Nam Tran Ngoc Nam
10 tháng 6 2016 lúc 23:14

A=x

Nguyễn Thảo Ly
20 tháng 7 2016 lúc 8:42

a) A=x^2+2

b) mình nghĩ x thuộc tập hợp R

c)GTNN của A=1/4 khi x=1/2

Vũ Thị An
Xem chi tiết