Cho a, b, c là 3 số khác 0 thỏa mãn điều kiện a^3 + b^3 + c^3 và a+b+c=0 . Tính giá trị Biểu thức
cho a,b,c là 3 số khác 0 thỏa mãn điều kiện a/b=b/c=c/a. tính giá trị biểu thức A= (a+b).(b+c).(c+a)/abc
Xét a+b+c=0 thì A=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=-1\)
Xét a+b+c\(\ne0\).Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
\(\Rightarrow A=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a.2a.2a}{a.a.a}=8\)
Vậy.................................
cho a,b,c khác 0 thỏa mãn điều kiện ab/a+b=bc/b+c=ca/c+a. Tính giá trị của biểu thức (a-b)^3 + (b-c)^3 + (c-a)^3
đáp án 3 cậu nhân chéo rồi so sánh a;b;c thì bằng nhau => cậu tự nghĩ nhá
cho a,b,c là các số khác 0 thỏa mãn điều kiện ab/a+b=bc/b+c=ca/c+a.Tính giá trị của biểu thức(a-b)^3+(b+c)^3+(c-a)^3
. Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện: a + b ≠ - c và a b c b c a c a b c a b . Tính giá trị biểu thức: P = 1 1 1 b a c a c b
cho 3 số a,b,c khác 0 và a+b+c không bằng 0 thỏa mãn điều kiện a/b+c =b/a+c = c/a+b
tính giá trị biểu thức P=b+c/a + a+c/b + a+b/c
Cho a, b, c là 3 số thực khác 0 thỏa mãn điều kiện:
a3+b3+c3=3abc. Tính giá trị của biểu thức:
M=(1+ a/b) (1+ b/c) (1+ c/a)
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)
ta có : \(a^3+b^3+c^3=3abc\Rightarrow a=b=c\)
\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2.2.2=8\)
o0o I am a studious person o0o: Theo em thì: \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\orbr{\begin{cases}a=b=c\\a+b+c=0\end{cases}}\) chứ ạ?
Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)
\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\\ \dfrac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)
\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\\ =\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\\ =\dfrac{2c.2b.2a}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)
a, cho các số a,b,c thỏa mãn 3/a+b = 2 /b+c = 1 / c+ (giả thuyết các tỉ số đều có nghĩa ) Tính giá trị biếu thức P = a + b - 2019c/ a + b + 2018c
b, Cho ab,ac ( c khác 0 ) là các số thỏa mãn điều kiện ab/a+b = bc / b+c
\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)
Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)
Cho 3 số a,b,c đôi một khác 0, tính giá trị của biểu thức:
\(A=\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)
thỏa mãn điều kiện: \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Ta có: \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)\(=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
=> a+b=2c; b+c=2a; c+a=2b
Thay vào A ta được: A=((a+b)/b)((c+b)/c)((a+c)/a)
=2c/b.2a/c.2b/a=2.2.2=8