Cho a, b, c là 3 số thực khác 0 thỏa mãn điều kiện:
a3+b3+c3=3abc. Tính giá trị của biểu thức:
M=(1+ a/b) (1+ b/c) (1+ c/a)
Cho 3 số a,b,c đôi một khác 0, tính giá trị của biểu thức:
\(A=\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)
thỏa mãn điều kiện: \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Cho 3 số a,b,c khác nhau đôi một và khác 0,đồng thời thỏa mãn điều kiện \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\).Tính giá trị biểu thức A=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
1. Cho ba số a,b,c thỏa mãn đồng thời 3 điều kiện:
a2 + 2b + 1=0; b2 + 2c + 1=0; c2 + 2a +1 =0.
Tính giá trị biểu thức: A= a2003 + b2009 + c2011
2. Cho ba số a,b,c thỏa mãn đồng thời 3 điều kiện:
a + b + c=1, a2 + b2 + c2=1; a3 + b3+ c3 =1
Tính giá trị biểu thức P= a2009 + b2010 + c2011
Cho a, b, c là các số khác 0 thỏa mãn: ab + ac + bc = 0. Tính giá trị biểu thức M = 1/3(ab/c^2 + ac/b^2 + bc/a^2)
Với a,b,c là các số thực thỏa mãn các điều kiện a+b+c = 3 và 1/a + 1/b + 1/c = 1 3 Tính giá trị biểu thức P = ( a − 3 )^2017 . ( b − 3 )^2018 . ( c − 3 )^2019
Tính giá trị biểu thức \(P=a^{2009}+b^{2009}+c^{2009}\)
Trong đó a,b,c là các số thực khác 0 thỏa mãn các điều kiện
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{cases}}\)
Cho 3 số a,b,c thỏa mãn đồng thời 2 điều kiện:
a+b+c=0 và \(a^2+b^2+c^2=2016\)
Tính giá trị của biểu thức A=\(a^4+b^4+c^4\)
Cho 3 số a,b,c thỏa mãn điều kiện 0=<a,b,c=<2 và a+b+c=3
Tính GTLN của biểu thức P=a^2+b^2+c^2