chứng minh rằng 2a + 3b : thì 8a + 5b : 7
Cho a,b là các số nguyên, chứng minh rằng: nếu (2a+3b) chia hết 7 thì (8a + 5b) chia hết 7
Giả sử: abc¯¯¯¯¯¯¯+(2a+3b+c)abc¯+(2a+3b+c)chia hết cho7, ta có:
abc¯¯¯¯¯¯¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.babc¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.b
Vì a.98a.98 chia hết cho 7(98 chia hết cho 7)7.b7.b chia hết cho 7 ⇒a.98+b.7⇒a.98+b.7 chia hết cho 7
⇒abc¯¯¯¯¯¯¯+(2a+3b+c)⇒abc¯+(2a+3b+c)chia hết cho 7
Mà theo đầu đề bài abc¯¯¯¯¯¯¯abc¯chia hết cho 7 => 2a+3b+c chia hết cho 7
Ta có : 2a+3b\(⋮\)7
\(\Rightarrow\)4(2a+3b)\(⋮\)7
\(\Rightarrow\)8a+12b\(⋮\)7
\(\Rightarrow\)8a+5b+7b\(⋮\)7
Vì 7b\(⋮\)7
\(\Rightarrow\)8a+5b\(⋮\)7
Vậy 8a+5b\(⋮\)7.
cho a,b là các số nguyên. Chứng minh rằng: 2a+3b chia hết cho 7 thì 8a+5b chia hết cho 7 và ngược lại
- Nếu \(2a+3b⋮7\Rightarrow4\left(2a+3b\right)⋮7\Rightarrow8a+12b⋮7\)
\(\Rightarrow8a+5b+7b⋮7\)
Mà \(7b⋮7\) với mọi b nguyên \(\Rightarrow8a+5b⋮7\)
- Nếu \(8a+5b⋮7\), do \(7b⋮7\Rightarrow8a+5b+7b⋮7\Rightarrow8a+12b⋮7\)
\(\Rightarrow4\left(2a+3b\right)⋮7\)
Mà 4 và 7 nguyên tố cùng nhau \(\Rightarrow2a+3b⋮7\)
Chứng Minh Rằng:
Nếu 2a+3b chia hết cho 7 thì 8a+5b chia hết cho 7
Giả sử: \(\overline{abc}+\left(2a+3b+c\right)\)chia hết cho7, ta có:
\(\overline{abc}+\left(2a+3b+c\right)=a.100+b.10+c+2a+3b+c=a.98+7.b\)
Vì \(a.98\) chia hết cho 7(98 chia hết cho 7)\(7.b\) chia hết cho 7 \(\Rightarrow a.98+b.7\) chia hết cho 7
\(\Rightarrow\overline{abc}+\left(2a+3b+c\right)\)chia hết cho 7
Mà theo đầu đề bài \(\overline{abc}\)chia hết cho 7 => 2a+3b+c chia hết cho 7
Chứng minh rằng ( a,b ) = ( 8a + 5b , 11a + 3b )
1) chứng minh rằng
Nếu abcd ( số tự nhiên ) ⋮ 101 thì ab-cd ⋮ 101
2) cho m + 4n ⋮ 13 . Chứng tỏ 10m + n ⋮ 13
3) cho 6a+11b ⋮ 31 . Chứng minh a + 7b ⋮ 31
4) 2a + 3b ⋮ 7 chứng minh 8+5b ⋮ 7
mọi giúp em với huhuhuhu
mai em nộp rồi
Bài 1: \(\overline{abcd}\) ⋮ 101
⇒ \(\overline{ab}\) \(\times\) 100 + \(\overline{cd}\) ⋮ 101
\(\overline{ab}\) \(\times\) 101 - \(\overline{ab}\) + \(\overline{cd}\) ⋮ 101
\(\overline{ab}\) \(\times\) 101 - (\(\overline{ab}\) - \(\overline{cd}\)) ⋮ 101
\(\overline{ab}\) - \(\overline{cd}\) ⋮ 101 (đpcm)
238.(- 41)+ 41.138
giúp mình với huhu
làm ơn
Bài 2: m + 4n ⋮ 13
⇒ 10.(m + 4n) ⋮ 13
10m + 40n ⋮ 13
10m + 39n + n ⋮ 13
13.3n + 10m + n ⋮ 13
10m + n ⋮ 13 (đpcm)
Có: a+5b chia hết cho 7
=> 2.(a+5b)\(⋮\) 7
\(\Leftrightarrow2a+10b⋮7\)
\(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )
\(\Leftrightarrow2a+3b\) chia hết cho 7
=> điều phải chứng minh
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
Ta có : tích của 2 và 3 thì chia hết cho 17
=> 10a = 2 x 5 x a + b chia hết cho 17
Những câu dưới bạn tự làm nha
Chứng minh rằng nếu a;b là các số nguyên thì 2a+3b khi và chỉ khi 9a+5b chia hết cho 17
chịuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
khó quáaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
cho a và b là các số nguyên ,hãy chứng minh rằng: nếu 2a+3b chia hết cho 17 thì 9a+5b chia hết cho 17 và ngược lại