tìm hai số x và y biết 3x = 5y và x - y = 18
Tìm hai số x và y biết :7x=5y và x-y=18
7x -5y=0 (2)
x-y=18 => x=18+y (1)
Thay (1) vào (2) ta có:
7(18+y) - 5y =0
<=> 126 + 7y -5y =0
<=> 2y= -126
<=> y= -63
Vậy x= 18-63= -45
7x = 5y => \(\dfrac{x}{5}=\dfrac{y}{7}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x-y}{5-7}\) = \(\dfrac{18}{-2}\) = -9
x = -9 . 5 = -45
y = -9.7 = -63
vậy (x; y) =( -45; -63)
Bài tập 2. Tìm hai số x, y biết:
a)
x 5
=
y 2
và 3x−2y = −55;
b)
x 3
=
y 2
và 2x + 5y = 48;
c) −2x = 5y và x + y = 30;
d) 3x = 4y và 2x + 3y = 34.
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)
Tìm hai số x,y biết rằng: x+y=32 và 3x=5y
Ta có
x + y = 32
=> 3x + 3y = 96
3x = 5y
=> 5y + 3y = 96
=> 8y = 96
=> y = 12
Mà ta có x + y = 32
=> x + 12 = 32
=> x = 32 - 12 = 20
Kết luận
Ta có x là 20 và y là 12
Tìm x, y, z biết:
3x = 4y; 5y = 6z và x + y - z = 18
tìm hai số x, y biết:
1/ -2x=5y và x+y=30
2/ 3x=5y và x+y=40
3/ 4x=5y và 3x-2y=35
4/ x:2=y:(-5) và x-y=7
5/ \(\frac{x}{19}\)=\(\frac{y}{21}\) và 2x-y=34
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
bạn kia làm đúng rồi
k tui nha
thank
Tìm hai số x,y biết: 2x=5y và 3x + 4y = 46
tìm các so x, y, z biết 3x =4y, 5y= 6z , và x+y-z = 18
Ta có: 3x = 4y => \(\frac{x}{4}=\frac{y}{3}\) => \(\frac{x}{8}=\frac{y}{6}\)
5y = 6z => \(\frac{y}{6}=\frac{z}{5}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{6}=\frac{z}{5}=\frac{x+y-z}{8+6-5}=\frac{18}{9}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{6}=2\\\frac{z}{5}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.6=12\\z=2.5=10\end{cases}}\)
Vậy ....
Tìm số nguyên x,y biết xy+3x-5y =18
x(3+y) - 5y = 18
=> x(3+y) - 5y - 15 = 18 - 15
=> x(3+y) - (5y+15) = 3
=> x(3+y) - 5(3+y) = 3
=> (3+y)(x-5) = 3
Ta có bảng:
3+y | 1 | 3 | -1 | -3 |
y | -2 | 0 | -4 | -6 |
x-5 | 3 | 1 | -3 | -1 |
x | 8 | 6 | 2 | 4 |
Vậy (x;y) = (8;-2), (6;0), (2;-4), (4;-6)
\(xy+3x-5y=18\)
\(\Leftrightarrow xy+3x-5y-15=18-15\)
\(\Leftrightarrow x\left(y+3\right)-5\left(y+3\right)=3\)
\(\Leftrightarrow\left(y+3\right)\left(x-5\right)=3\)
\(\Rightarrow y+3;x-5\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng giá trị
x-5 | -3 | 1 | -1 | 3 |
x | 2 | 6 | 4 | 8 |
y+3 | -1 | 3 | -3 | 1 |
y | -4 | 0 | -6 | -2 |
Đối chiếu điều kiện x;y \(\inℤ\)
Vậy (x;y)=(2;-4);(6;0);(4;-6);(8;-2)
xy+3x-5y=18
x(y+3)-5y=18
x(y+3)-y=13
x(y+3)-(y+3)=16
(x-1)(y+3)=16
vì x;y nguyên=>x-1;y+3 nguyên
=>x-1;y+3 thuộc Ư(16)
Ta có bảng:
x-1 | 1 | 16 | 2 | 8 | -1 | -16 | -2 | -8 | |
y+3 | 16 | 1 | 8 | 2 | -16 | -1 | -8 | -2 | |
x | 2 | 17 | 3 | 9 | 0 | -15 | -1 | -7 | |
y | 13 | -2 | 5 | -1 | -19 | -4 | -11 | -5 |
Vậy..............................................................................................................................
Tìm giá trị của x và y biết:
a/ 3x + 5y = 13 và y= x +1
b/ 2x - 3y = 4 và x = y+5
c/ -x +5y = -6 và y = x-2
Lời giải:
a. Thay $y=x+1$ vào điều kiện ban đầu có:
$3x+5(x+1)=13$
$8x+5=13$
$8x=8$
$x=1$
$y=x+1=2$
b. Thay $x=y+5$ vô điều kiện đầu thì:
$2(y+5)-3y=4$
$-y+10=4$
$-y=-6$
$y=6$
$x=6+5=11$
c. Thay $y=x-2$ vô điều kiện đầu thì:
$-x+5(x-2)=-6$
$4x-10=-6$
$4x=10+(-6)=4$
$x=1$
$y=x-2=1-2=-1$
a) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\x+1=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\3x-3y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=16\\x+1=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1=2-1=1\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}2x-3y=4\\x=y+5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\2x-2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=-6\\x=y+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=11\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}-x+5y=-6\\y=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+5y=-6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=-4\\y=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=y+2=-1+2=1\end{matrix}\right.\)