ab + bc + ca = 3 ; a,b,c >0 CMR:
\(\frac{a}{a^2+7}+\frac{b}{b^2+7}+\frac{c}{c^2+7}\le\frac{3}{8} \)
cho 3 số thực không âm cm:
ab(b^2+bc+ca)+bc(c^2+ca+ab)+ca(a^2+ab+bc)<(ab+bc+ca)(a^2+b^2+c^2)
a^5/bc^3 + b^5/ca^3 + c^5/ab^3 >= ab/c + bc/a + ca/b
Cho a,b,c không âm. Chứng minh rằng :
a) a2 + b2 + c2 + 2abc + 2 > hoặc=ab +bc +ca +a+b+c
b)a2 + b2 +c2 +abc +4 > hoặc = 2(ab+bc+ca)
c) 3(a2 + b2 + c2) + abc +4 > hoặc =4 (ab+bc+ca)
d) 3(a2 + b2 + c2) + abc +80 > 4(ab+bc+ca) + 8(a+b+c)
Tìm TBC của 3 số ab, bc,ca biết ab+bc+ca=abc
Ta có : ab + bc + ca = abc
10a + b + 10b + c + 10c + a = abc
11a + 11b + 11c = abc
11(a + b + c) = abc
=>
\(A=\frac{a^2+bc}{b+ac}+\frac{b^2+ca}{c+ab}+\frac{c^2+ab}{a+bc}\)
\(=\frac{3\left(a^2+bc\right)}{\left(a+b+c\right)b+3ac}+\frac{3\left(b^2+ca\right)}{\left(a+b+c\right)c+3ab}+\frac{3\left(c^2+ab\right)}{\left(a+b+c\right)a+3bc}\)
\(\ge\frac{3\left(a^2+bc\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}+\frac{3\left(b^2+ca\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}+\frac{3\left(c^2+ab\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}=3\)
Cho tam giác ABC có BC = a, CA = b, AB = c. CMR:
ab + bc + ca ≥ 4\(\sqrt{3}\).S
Ta cần chứng minh:
\(\left(ab+bc+ca\right)^2\ge48\left(\dfrac{a+b+c}{2}\right)\left(\dfrac{a+b-c}{2}\right)\left(\dfrac{b+c-a}{2}\right)\left(\dfrac{c+a-b}{2}\right)\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
Mặt khác do a;b;c là 3 cạnh của 1 tam giác:
\(\Rightarrow\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\le abc\)
Nên ta chỉ cần chứng minh:
\(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\) (đúng)
Ta có: \(S=\dfrac{1}{2}ab\cdot sinC=\dfrac{1}{2}bc\cdot sinA=\dfrac{1}{2}ac\cdot sinB\)
\(\Leftrightarrow\) \(ab=\dfrac{2S}{sinC}\); \(bc=\dfrac{2S}{sinA}\); \(ac=\dfrac{2S}{sinB}\)
\(\Rightarrow\) \(ab+bc+ca=2S\left(\dfrac{1}{sinA}+\dfrac{1}{sinB}+\dfrac{1}{sinC}\right)\)
Vì \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) \(\Rightarrow\) \(\dfrac{1}{sinA}+\dfrac{1}{sinB}+\dfrac{1}{sinC}\ge2\sqrt{3}\)
\(\Leftrightarrow\) \(2S\left(\dfrac{1}{sinA}+\dfrac{1}{sinB}+\dfrac{1}{sinC}\right)\ge4\sqrt{3}S\)
Hay \(ab+bc+ca\ge4\sqrt{3}S\) (đpcm)
Dấu "=" xảy ra khi \(sinA=sinB=sinC=\dfrac{\sqrt{3}}{2}\) hay \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
hay tam giác ABC đều
Chúc bn học tốt!
Cho 3 số dương a,b,c.CMR: bc^2/a+ca^2/b+ab^2/c>=ab+bc+ca
\(\dfrac{bc^2}{a}+\dfrac{ca^2}{b}+\dfrac{ab^2}{c}=\dfrac{b^2c^2}{ab}+\dfrac{c^2a^2}{bc}+\dfrac{a^2b^2}{ac}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
tìm số trung bình cộng của 3 số ab ; bc; ca biết 0,ab x 0,bc x 0, ca = a, bc
Cho a,b,c>0. Cmr: a) \(\frac{ab}{a^2+bc+ca}+\frac{bc}{b^2+ca+ab}+\frac{ca}{c^2+ab+bc}\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)
b) \(\frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\le1\)
a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)