Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Tien Viet Anh
Xem chi tiết
Dương No Pro
4 tháng 12 2020 lúc 17:29

A = 22 + 24 + 26 + 28 + ... + 218 + 220

A = ( 22 + 24 ) + ( 26 + 28 ) + ... + ( 218 + 220 )

A = 20 + ( 26 . 1 + 26 . 22 ) + ... + ( 218 . 1 + 218 . 22 )

A = 20 + 24 ( 22 + 24 ) + ... + 216 ( 22 + 24 )

A = 20 . ( 24 + ... + 216 ) \(⋮\)5

Vậy A \(⋮\)5

Học tốt!!!

Khách vãng lai đã xóa
Trà My Phạm
Xem chi tiết
Trà My Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 5 2022 lúc 0:21

Bài 3: 

a: \(3^x=243\)

nên \(3^x=3^5\)

hay x=5

b: \(x^5=32\)

nên \(x^5=2^5\)

hay x=2

c: \(x^6=729\)

\(\Leftrightarrow x^2=9\)

=>x=3 hoặc x=-3

Trần Thùy Dương
Xem chi tiết
Kiều Vũ Linh
9 tháng 11 2023 lúc 20:45

A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

b) A = 2 + 2² + 2³ + ... + 2¹⁰⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁹⁷ + 2⁹⁸ + 2⁹⁹ + 2¹⁰⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2⁹⁶.30

= 30.(1 + 2⁴ + ... + 2⁹⁶)

= 6.5.(1 + 2⁴ + ... + 2⁹⁶) ⋮ 6

Vậy A ⋮ 6

fidlend
Xem chi tiết

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

Đỗ Đình Tuấn Anh
Xem chi tiết
Trần Bảo Thư
Xem chi tiết
.
7 tháng 3 2020 lúc 14:31

Ta có : A=22+24+26+...+220

=(22+24)+(26+28)+...+(218+220)

=22(1+22)+26(1+22)+...+218(1+22)

=22.5+26.5+...+218.5 chia hết cho 5

Vậy A chia hết cho 5.

Khách vãng lai đã xóa
✎✰ ๖ۣۜLαɗσηηα ༣✰✍
7 tháng 3 2020 lúc 14:35

\(A=2^2+2^4+2^6..+2^{18}+2^{20}\)

\(\Leftrightarrow A=\left(2^2+2^4\right)+\left(2^6+2^8\right)+...+\left(2^{18}+2^{20}\right)\)

\(\Leftrightarrow A=20+2^4.\left(2^2+2^4\right)+...+2^{16}.\left(2^2+2^4\right)\)

\(\Leftrightarrow A=20+2^4.20+..+2^{16}.20\)

\(\Leftrightarrow A=20\left(1+2^4+..+2^{16}\right)\)

Vì \(20⋮5\)

\(\Rightarrow A=20\left(1+2^4+..+2^{16}\right)⋮5\)

Vậy \(A⋮5\)

hok tốt!!

Khách vãng lai đã xóa
Tran Le Khanh Linh
7 tháng 3 2020 lúc 14:40

\(A=2^2+2^4+2^6+2^8+....+2^{18}+2^{20}\)

\(A=\left(2^2+2^4\right)+\left(2^6+2^8\right)+....+\left(2^{18}+2^{20}\right)\)

\(A=2^2\left(1+2^2\right)+2^6\left(1+2^2\right)+....+2^{18}\left(1+2^2\right)\)

\(A=2^2\cdot5+2^6\cdot5+...+2^{18}\cdot5\)

\(A=5\left(2^2+2^6+...+2^{18}\right)\)

=> A chia hết cho 5

Khách vãng lai đã xóa
Nguyễn Duẩn
Xem chi tiết
Tiến Dũng Trương
28 tháng 10 2023 lúc 15:43

a) Ta có:

\( A = 5+5^2+5^3+\ldots+5^{100} \)

Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).

Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).

Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).

Do đó, A chia hết cho 5.

Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).

Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).

Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).

Do đó, A không chia hết cho 25.

b) Ta có:

\( B = 5+5^2+5^3+\ldots+5^{20} \)

Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).

Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).

Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).

Do đó, B chia hết cho 6.

c) Ta có:

\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)

Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).

Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).

Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).

Do đó, C không chia hết cho 6.

d) Ta có:

\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)

Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).

Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục

mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))

Nguyễn Duẩn
28 tháng 10 2023 lúc 16:03

bạn Tiến Dũng Trương lm sai r

Nguyễn Thị Thương Hoài
28 tháng 10 2023 lúc 17:37

a, A = 5 + 52 + 53 + ... + 5100

    A = 5. ( 1 + 5 + ...+ 599)

    5 ⋮ 5 ⇒A =  5.(1 + 5 + ...+ 599) ⋮ 5 (1) 

A  = 5 + 52 + 53 + ... + 5100

A  = 5 + 52.( 1 + 5 + 52 + ... + 598)

A = 5 + 25 . ( 1 + 5 + 5+...+ 598)

Vì 25 ⋮ 25 nên 25.(1 + 5 + 52 +... + 598) ⋮ 25 

5 không chia hết cho 25 nên 

A = 5 + 25.( 1 + 5 +...+ 598) không chia hết cho 25 (2)

Kết hợp (1) và (2) ta có:

A ⋮ 5 nhưng không chia hết cho 25 (đpcm)

 

 

 

  

   

Soobin
Xem chi tiết