\(A=2^2+2^4+...+2^{18}+2^{20}\)
\(=\left(2^2+2^4\right)+\left(2^6+2^8\right)+...+\left(2^{18}+2^{20}\right)\)
\(=2^2\left(1+2^2\right)+2^6\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)
\(=2^2.5+2^6.5+...+2^{18}.5⋮5\)
\(\Rightarrow A⋮5\)
Dễ dàng tính được \(A=\frac{2^{22}-2^2}{3}\)
Ta có:
\(A=\frac{2^2\cdot\left(2^{20}-1\right)}{3}=\frac{2^2\cdot\left(2^{10}-1\right)\cdot\left(2^{10}+1\right)}{3}=\frac{2^2\cdot1023\cdot1025}{3}\)
Do đó A chia hết cho 5
Chúc bạn học tốt!