chứng minh rằng : x^3+y^3+z^3-3xyz =(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
cmr
a, x^4-y^4=(x-y)(x^3-x^2y+xy^2+y^3)
b,x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
a)
\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right).\)
b)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=x^3+x^2y+x^2z+xy^2+y^3+y^2z+\)
\(+xz^2+yz^2+z^3-x^2y-xy^2-xyz-xyz-y^2z-yz^2-x^2z-xyz-xz^2=\)
\(=x^3+y^3+z^3-3xyz\)
Cho x,y,z # 0 và \(x^2=yz, y^2=xz, z^2=xy\)
Chứng Minh Rằng: \(x=y=z\)
Ta có:x mũ 2 = y.z và y mũ 2=x.z
=>x mũ 2=yz.y mũ 2
=>x mũ 3.z=y mũ 3.z
=>x mũ 3=y mũ 3
=>x=y
Ta lại có: y=xz và x mũ 2=xy
=>y mũ 2.x.y=xy.z mũ 2
=>y mũ 3.x=z mũ 3.x
=>y mũ 3=z mũ 3
=>y=z
Vì x=y;y=z
=>x=y=z
Chứng minh rằng
x3+y3+z3-3xyz=(x+y+z)*(x2+y2+z2-xy-yz-xz)
Xét \(VT=x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right).\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right).\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=VP\)
Vậy ta có đpcm
cho \(x,y,z\in Z^+\)thoả mãn \(x^2+y^2+z^2=3\)
Chứng minh \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+xz\)
CMR: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Lời giải:
Áp dụng hằng đẳng thức dạng:
\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:
\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)
\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)
\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)
\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Ta có đpcm.
Lời giải:
Áp dụng hằng đẳng thức dạng:
\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:
\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)
\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)
\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)
\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Ta có đpcm.
Cho x+y+z=0. Chứng minh rằng
a) x3+y3+z3=3xyz
b)(xy+yz+xz)2=x2y2+y2z2+x2z2
c)x4+y4+z4=2(xy+yz+xz)2
a, \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)( 1 )
Nhận xét : \(\left(x+y\right)^3=x^3+y^3+3x^2y+3xy^2\Rightarrow x^3+y^3=\left(x+y\right)^3-3x^2-3xy^2\)
Thay vào ( 1 ) ta có :
\(\left(x+y\right)^3+c^3-3x^2y-3xy^2-3xyz\)
\(=\left(z+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(z+y+z\right)\left(z^2+2xy+y^2-xz-yz+z^2\right)-3xyz\left(z+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(z^2+x^2+y^2-xy-yz-xz\right)\)
Vì theo đầu bài ta có: \(x+y+z=0\)nên ta có ( DPCM ) ..... học cho tốt nhé!
\(a)x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow x^3+y^3+3x^2y+3xy^2-3x^2y-3xy^2+z^3-3xyz=0\)
\(\) \(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(\right.\) \(\left(x+y\right)^2-z\left(x+y\right)+z^2-3xy)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(\right.\) \(x^2+2xy+y^2-xz-yz+z^2-3xy)=0\)
Mà \(x+y+z=0\)
\(\Rightarrow0=0\left(đpcm)\right.\)
\(b)\left(x^2y^2+y^2z^2+x^2z^2+2\left.x^2yz+2xy^2z+2xyz^2\right)\right.=x^2y^2+y^2z^2+x^2z^2\)
\(\Leftrightarrow2\left(\right.\) \(x^2yz+xy^2z+xyz^2)=0\)
\(\Leftrightarrow2\left(x+y+z\right)\left(xyz\right)=0\)
Mà \(x+y+z=0\)
\(\Rightarrow0=0\left(đpcm\right)\)
\(c)\) Ta có:\(x+y+z=0\)
\(\Rightarrow\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2+2\left(\right.\) \(x^2yz+xy^2z+xyz^2)=0\)
\(\Rightarrow2\left(\right.\) \(xy+yz+xz^{})=-\left(\right.\) \(x^2+y^2+z^2)\)
\(\Rightarrow4\left(\right.\) \(xy+yz+xz)^2=\) \(x^4+y^4+z^4+2\left(\right.\) \(x^2y^2+y^2z^2+x^2z^2)\left(1\right)\)
Mà ta có: \(\left(xy+yz+xz\right)^2=x^2y^2+y^2z^2+x^2z^2\) (theo câu b)
\(\Leftrightarrow2\left(xy+yz+xz\right)^2=2\left(\right.\) \(x^2y^2+y^2z^2+x^2z^2)\left(2\right)\)
\(\left(1\right)-\left(2\right)\Leftrightarrow2\left(xy+yz+xz\right)^2=x^4+y^4+z^4\left(đpcm\right)\)
CMR: x3+y3+z3-3xyz= (x+y+z)(x2+y2+z2- xy - yz - xz)
Bạn tham khảo tại link sau:
chứng minh rằng: x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-xz)
m đăg oy hả,m cn nhớ cách làm mà cn nhi chỉ mk hk,cn cách của cn nga t thử làm oy mà hk ra
Ta có
\(x^3+y^3+z^3-3xyz=x^3+y^3+3xy\left(x+y\right)-3xy\left(x+y\right)+z^3-3xyz\)( mình thêm 3xy(x+y) và để kết hợp với x^3 +y^3 sẽ thành HDT lập phương của 1 tổng nhưng thêm thì phải bớt ra nha )
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)( có cái cục (x+y)^3 +z^3 thì ta có hằng đẳng thức tổng 2 lập phương)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-yz-xz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\Rightarrow dpcm\)
Chúc bạn học tốt
T I C K ủng hộ nha
Cho x,y,z>0 và \(x+y+z\le\dfrac{3}{4}\). Tìm Min A = \(\Sigma\dfrac{x^3}{\sqrt{y^2+3}}\)
Cho x,y,z> 0 và xy+yz+xz = 3xyz . Tìm MaxP = \(\Sigma\dfrac{yz}{x^3\left(z+2y\right)}\)