Lời giải:
Áp dụng hằng đẳng thức dạng:
\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:
\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)
\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)
\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)
\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Ta có đpcm.
Lời giải:
Áp dụng hằng đẳng thức dạng:
\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:
\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)
\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)
\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)
\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Ta có đpcm.