Tìm GTLN (hoặc GTNN) của biểu thức sau:
\(M=4x^2+4x+5\)
Tìm GTLN hoặc GTNN của biểu thức sau \(2x^2+4x+5\)
Ta có: A = 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 \(\ge\)3 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MinA = 3 <=> x = -1
\(2x^2+4x+5\)
\(=2\left(x^2+2x+\frac{5}{2}\right)\)
\(=2\left(x^2+2x+1+\frac{3}{2}\right)\)
\(=2\left[\left(x+1\right)^2+\frac{3}{2}\right]\)
\(=2\left(x+1\right)^2+3\ge3\)
Dấu '' = '' xảy ra khi
\(\Leftrightarrow2\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy............................
P/s : sai thì thôi nha
Tìm GTNN hoặc GTLN trong biểu thức sau \(x^2-4x+5+y^2+2y\)
x^2 -4x+5+y^2+2y
=(x^2-4x+4)+(y^2+2y +1)
=(x-2)^2+(y+1)^2
vì (x-2 )^2 >= 0
(y+1)^2>=0
=)) (x-2)^2 +(y+1)^2 >=0
dấu "=" xảy ra
<=>x-2 =0 =)x=2
và y+1=0 =)y=-1
vậy..........
H = x2 - 4x + 5 + y2 + 2y
H = ( x2 - 4x + 4) + ( y2 + 2y + 1 )
H = ( x - 2 )2 + ( y + 1 )2 \(\ge\)0
Dấu = xảy ra\(\Leftrightarrow\)x - 2 = 0 và y + 1 = 0
\(\Rightarrow\)x = 2 và y = - 1
Vậy : Min H = 0 \(\Leftrightarrow\)x = 2 và y = - 1
Tìm GTLN hoặc GTNN của biểu thức sau ( nếu có)
\(4x^2+4x+5\)
Ta có: \(4x^2+4x+5\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1+4\)
\(=\left(2x+1\right)^2+4\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi
\(\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(4x^2+4x+5\) là 4 khi \(x=\frac{-1}{2}\)
\(4x^2+4x+1+4=\left(2x+1\right)^2+4\ge4\)
Vậy MIN =4 với x=-1/2
Tìm GTNN hoặc GTLN của các biểu thức sau
B=4x^2+8x
C=-2x^2+8x-15
B = 4x2 + 8x
= 4( x2 + 2x + 1 ) - 4
= 4( x + 1 )2 - 4
4( x + 1 )2 ≥ 0 ∀ x => 4( x + 1 )2 - 4 ≥ -4
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MinB = -4 <=> x = -1
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
Tìm GTLN hoặc GTNN của biểu thức sau:
C=4x2+25y2-4x+30y
(Giải theo cách của lớp 8 giúp mình nhé)
Ta có : C = 4x2 + 25y2 - 4x + 30y
=> C = 4x2 - 4x + 25y2 + 30y
=> C = (4x2 - 4x + 1) + (25y2 + 30y + 9) - 10
=> C = (2x - 1)2 + (5y + 3)2 - 10
Mà \(\left(2x-1\right)^2;\left(5y+3\right)^2\ge0\forall x\)
Nên C = (2x - 1)2 + (5y + 3)2 - 10 \(\ge-10\forall x\)
Vậy giá trị nhỏ nhất của C là -10 tại x = \(\frac{1}{2}\) và y = \(-\frac{3}{5}\)
Ta có:
4x^2+25y^2-4x+30y
=(4x^2-4x+1)+(25y^2+30y+9)-10
=(2x-1)^2+(5y+3)^2-10
Vì (2x-1)^2>=0 với mọi x; (5y+3)^2>=0 với mọi y
=>(2x-1)^2+(5y+3)^2>=0 với mọi x,y
=>(2x-1)^2+(5y+3)^2-10>=-10 với mọi x,y
Dấu "=" xảy ra <=>2x-1=0 và 5y+3=0
<=>x=1/2 và y=-3/5
\(C=4x^2+25y^2-4x+30y\)
\(=4x^2-4x+1-1+25y^2+30y+9-9\)
\(=\left(2x-1\right)^2+\left(5y+3\right)^2-10\)
Dễ thấy: \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\\left(5y+3\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(2x-1\right)^2+\left(5y+3\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+\left(5y+3\right)^2-10\ge-10\)
Xảy ra khi \(\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(5y+3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{5}\end{cases}}\)
Tìm GTLN hoặc GTNN của biểu thức sau (nếu có)
\(4x^2+4x+5\)
- Đặt \(A=4x^2+4x+5\)
- Ta có: \(A=4x^2+4x+5\)
\(\Leftrightarrow A=\left(4x^2+4x+1\right)+4\)
\(\Leftrightarrow A=\left(2x+1\right)^2+4\)
- Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(2x+1\right)^2+4\ge4\forall x\)
\(\Rightarrow A_{min}=4\)
- Dấu "=" xảy ra khi: \(2x+1=0\)\(\Leftrightarrow\)\(2x=-1\)\(\Leftrightarrow\)\(x=-\frac{1}{2}\left(TM\right)\)
Vậy \(A_{min}=4\)\(\Leftrightarrow\)\(x=-\frac{1}{2}\)
Tìm GTLN hoặc GTNN của biểu thức :
B= -x^2 + 4x+5
C= x^2-4x+9
D= 9 +30x^2+25x^2
B = \(-x^2+4x+5=-\left(x^2-4x-5\right)=-\left[\left(x^2-4x+4\right)-9\right]=-\left(x-2\right)^2+9\)
Có: \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2+9\le9\)
Vậy MaxB = 9 <=> x = 2
-----
C = \(x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\)
Có: \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+5\ge5\)
Dấu ''='' xảy ra khi x = 2
Vậy MinC = 5 <=> x = 2
--------
D = \(9+30x^2+25x^2=9+55x^2\ge9\)
dấu ''='' xảy ra khi x = 0
vậy minC = 9 <=> x = 0
Tìm GTNN hoặc GTLN của biểu thức sau:
C= |x-3| (2-|x-3|)
D= (x-1)(x+5)(x^2 +4x+5)
G= (x-3)^2 + (x-2)^2
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1