HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho a, b, c thỏa mãn \(a^2+b^2+c^2=27\) và \(a+b+c=9\)
Tính giá trị của biểu thức \(B=\left(a-4\right)^{2018}+\left(b-4\right)^{2019}+\left(c-4\right)^{2020}\)
Cho điểm M thuộc cạnh CD của hình vuông ABCD. Tia phân giác của góc ABM cắt AD ở I. Chứng minh rằng BI \(\le\)2MI
Cho hình vuông ABCD, điểm M nằm trên đường chéo AC. Gọi E, F theo thứ tự là các hình chiếu của M trên AD, CD. Chứng minh rằng:
a) BM vuông góc với EF
b) Các đường thẳng BM, AF, CE đồng quy.
Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm E, F, G, H sao cho AE = BF = CG = DH. Chứng minh tứ giác EFGH là hình vuông.
Cho tam giác ABC. Điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho BD = CE. Gọi I, K, M, N theo thứ tự là trung điểm BE, CD, BC, DE.
a) Tứ giác MINK là hình gì? Vì sao?
b) Chứng minh rằng IK vuông góc với tia phân giác At của góc A.