Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huy Trường Lưu
Xem chi tiết
Nguyễn Đức Trí
30 tháng 8 2023 lúc 15:42

\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)

vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)

\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)

Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)

Nguyễn Đức Trí
30 tháng 8 2023 lúc 15:38

\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)

vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)

\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi

\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)

\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)

Vũ Thu Hà
Xem chi tiết
addfx
Xem chi tiết
Kiều Vũ Linh
2 tháng 10 2023 lúc 16:23

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

Khánh Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 21:23

1: (5x+3)^2>=0

=>2(5x+3)^2>=0

=>A<=6

Dấu = xảy ra khi x=-3/5

2: (x+9)^2+10>=10 

=>B<=13/10

Dấu = xảy ra khi x=-9

3: -3(2x-1)^2<=0

=>-3(2x-1)^2-7<=-7

Dấu = xảy ra khi x=1/2

Nguyễn Xuân Nguyên
Xem chi tiết
thang
14 tháng 6 2016 lúc 7:39

lop 8 con lic le 3

Lê Mai Linh Chi
Xem chi tiết
꧁WღX༺
Xem chi tiết
Vô danh
Xem chi tiết
Trần Tuấn Hoàng
4 tháng 4 2022 lúc 20:29

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Trần Tuấn Hoàng
4 tháng 4 2022 lúc 20:42

c. Bạn kiểm tra lại đề nhé.

b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)

Nguyễn Việt Lâm
5 tháng 4 2022 lúc 22:58

a.

\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)

Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)

b.

\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)

Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)

c.

Biểu thức này chỉ có min, ko có max

d.

\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Ác ma
Xem chi tiết
TuiTenQuynh
8 tháng 1 2019 lúc 14:48

Bài 1 :

\(C=\frac{1}{\left|x-2\right|+3}\)

\(C\le\frac{1}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy....

TuiTenQuynh
8 tháng 1 2019 lúc 14:54

Bài 2 :

a) \(\left(\frac{1}{2}\right)^{3x-1}=\frac{1}{32}\)

\(\left(\frac{1}{2}\right)^{3x-1}=\left(\frac{1}{2}\right)^5\)

\(\Rightarrow3x-1=5\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

b) \(2\cdot3^{x-405}=3^{x-1}\)

\(2=3^{x-1}:3^{x-405}\)

\(2=3^{x-1-x+405}\)

\(2=3^{404}\)( vô lí )

=> x thuộc rỗng

c) \(\frac{1}{81}\cdot27^{2x}=\left(-9\right)^4\)

\(\frac{27^{2x}}{81}=9^4\)

\(\frac{\left(3^3\right)^{2x}}{3^4}=\left(3^2\right)^4\)

\(\frac{3^{6x}}{3^4}=3^8\)

\(3^{6x-4}=3^8\)

\(\Rightarrow6x-4=8\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

d) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)

\(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)

\(\left(4x-1\right)^{20}\cdot\left[\left(4x-1\right)^{10}-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}4x-1=0\\4x-1=\left\{\pm1\right\}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=\left\{\frac{1}{2};0\right\}\end{cases}}\)