giải phương trình vô tỉ sau:
\(\sqrt{2x^2+5x-7}+\sqrt{3x^2-21x+18}=\sqrt{7x^2-6x-1}\)
giải phương trình :
a, \(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
b, \(3\left(\sqrt{2x-1}+2\sqrt{x+1}\right)=4\sqrt{2x^2+x-1}+6x-7\)
giải phương trình
\(x^2+3\sqrt{x^2-1}=\sqrt{x^2-x+1}\)
\(\sqrt{x^2+2x}+\sqrt{2x+1}=\sqrt{3x^2+4x+1}\)
\(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
\(\sqrt{5x^2-14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
Giai pt:
a. \(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
b. \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
Giải phương trình vô tỉ:
a, \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
b, \(\frac{2\sqrt{x}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
À câu a mình tự làm được rồi nhé! Các bạn chỉ cần làm câu b cho mình là được.
b, \(\frac{2\sqrt{x}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
ĐK \(x\ge0\)
Pt
<=> \(2\sqrt{x}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(x+9\right)}\)
<=> \(4x+x^2+x+4\sqrt{x^2\left(x+1\right)}=x^2+10x+9\)
<=> \(4x\sqrt{x+1}=5x+9\)
<=> \(16x^2\left(x+1\right)=25x^2+90x+81\)với mọi \(x\ge0\)
<=> \(16x^3-9x^2-90x-81=0\)
<=> \(x=3\)(tm ĐK)
Vậy x=3
Giải phương trình vô tỉ sau:
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
các bạn giúp mình nhé
cảm mơn!!!! ^^
giải phương trình:
\(a,\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)
\(b,x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)
\(c,3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
\(d,\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
\(c,\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2
Do đó VT=VP khi x=2
b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:
\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)
\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)
Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:
\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)
Đối chiếu ĐK của t
\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)
c) Đặt \(y=\sqrt{x^2+7x+7};y\ge0\)
Pt có dạng: \(3y^2+2y-5=0\Leftrightarrow\orbr{\begin{cases}y=\frac{-5}{3}\\y=1\end{cases}\Leftrightarrow y=1}\)
Với y=1\(\Leftrightarrow\sqrt{x^2+7x+7}=1\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-6\end{cases}}\)
Giải phương trình vô tỉ :
a) \(\left(\sqrt{x+3}-\sqrt{x-1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
b) \(\sqrt{2x+4}-2\sqrt{2-x}=\frac{6x-4}{\sqrt{x^2+4}}\)
c) \(\sqrt{3x^2-4x+2}+\sqrt{3x+1}+\sqrt{2x-1}+6x^3-7x^2-3=0\)
d) \(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\)
giải các phương trình sau:
\(\sqrt{x^2+6x+9}=3x-6\)
\(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
\(\sqrt{4-5x}=2-5x\)
\(\sqrt{4-5x}=\sqrt{2-5x}\)
\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)
Giải phương trình vô tỉ :
a) \(\sqrt{7x^2+25x+19}-\sqrt{x^2-2x-25}=7\sqrt{x+2}\)
b) \(\sqrt{4x^2+24x+35}-\sqrt{x^2+3x+2}=\sqrt{x^2+7x+12}\)