Tìm các số nguyên của x để các phân thức sau có giá trị nguyên
\(K=\frac{x^5+3x^3-x^2+3x-7}{x^2+2}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
\(C=\dfrac{x^4+3x^3+2x^2+6x-2}{x^2+2}\)
\(C=\dfrac{\left(x^2+3x\right)\left(x^2+2\right)-2}{x^2+2}=x^2+3x-\dfrac{2}{x^2+2}\)
\(C\in Z\Leftrightarrow2⋮\left(x^2+2\right)\)
\(\Leftrightarrow x^2+2=2\Rightarrow x=0\)
tìm các giá trị nguyên của x để phân thức 3x^3-4x^2+x-1/x-4 sau có giá trị là 1 số nguyên
=[3x(x2-16)+44(x2-16)+44.16+x-4+3]/(x-4)
=3x(x+4)+44(x+4)+1+(44.16+3)/(x-4)
để là giá trị nguyên thì 44.16+3=707 chia hết cho x-4
vậy x-4 phải là ước của 707
707=7.101 => x-4=7 hoặc x-4=101
=>x =11 hoăc x=105
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
\(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
\(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
a) \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Tìm các giá trị x nguyên để các phân thức sau có giá trị nguyên:
a) \(\frac{5}{2x+1}\)
b) \(\frac{x^3-3x^2+5}{x+2}\)
c) \(\frac{x^3-x^2+2}{x-2}\)
a) Gọi biểu thức trên là A. Để A nguyên thì \(5⋮2x+1\Leftrightarrow2x+1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)
Ta có bảng:
| 2x + 1 | -5 | -1 | 1 | 5 |
| x | -3 | -1 | 0 | 2 |
Do vậy \(x=\left\{-3;-1;0;2\right\}\)
b) Đặt \(A=\frac{x^3-3x^2+5}{x+2}=\frac{x^3+2x^2-5x^2-10x+10x+20-15}{x+2}\)
\(=\frac{x^2.\left(x+2\right)-5x.\left(x+2\right)+10.\left(x+2\right)-15}{x+2}=\frac{\left(x+2\right).\left(x^2-5x+10\right)-15}{x+2}\)
\(=x^2-5x+10+\frac{15}{x+2}\)
Để A nguyên
=> 15/x+2 nguyên ( do x nguyên nên x2 -5x + 10 cũng nguyên)
=> 15 chia hết cho x + 2
=> x + 2 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}
...
bn tự xét nha
c) Đặt \(A=\frac{x^3-x^2+2}{x-2}=\frac{x^3-2x^2+x^2-2x+2x-4+6}{x-2}\)
\(=\frac{x^2.\left(x-2\right)+x.\left(x-2\right)+2.\left(x-2\right)+6}{x-2}=\frac{\left(x-2\right).\left(x^2+x+2\right)+6}{x-2}\)
\(=x^2+x+2+\frac{6}{x-2}\)
...
Tìm các số nguyên x để các phân thức sau nhận giá trị nguyên:
a. 5x+11 (tử số) / 2x+3 (mẫu số)
b. 5x-4 (tử số) / 3x-1 (mẫu số)
c. 5x/3x+2
d. 7x+7/4x+3
e. 2x^2-x+2/x^2-x+2
a: ĐKXĐ: x<>-3/2
Để \(\frac{5x+11}{2x+3}\) là số nguyên thì \(5x+11\vdots2x+3\)
=>\(10x+22\vdots2x+3\)
=>\(10x+15+7\vdots2x+3\)
=>7⋮2x+3
=>2x+3∈{1;-1;7;-7}
=>2x∈{-2;-4;4;-10}
=>x∈{-1;-2;2;-5}
b: ĐKXĐ: x<>1/3
Để \(\frac{5x-4}{3x-1}\) là số nguyên thì 5x-4⋮3x-1
=>15x-12⋮3x-1
=>15x-5-7⋮3x-1
=>-7⋮3x-1
=>3x-1∈{1;-1;7;-7}
=>3x∈{2;0;8;-6}
=>x∈\(\left\lbrace\frac23;0;\frac83;-2\right\rbrace\)
mà x nguyên
nên x∈{0;-2}
c: ĐKXĐ: x<>-2/3
Để \(\frac{5x}{3x+2}\) là số nguyên thì 5x⋮3x+2
=>15x⋮3x+2
=>15x+10-10⋮3x+2
=>-10⋮3x+2
=>3x+2∈{1;-1;2;-2;5;-5;10;-10}
=>3x∈{-1;-3;0;-4;3;-7;8;-12}
=>x∈{-1/3;-1;0;-4/3;1;-7/3;8/3;-4}
mà x nguyên
nên x∈{-1;0;1;-4}
d:
ĐKXĐ: x<>-3/4
Để \(\frac{7x+7}{4x+3}\) là số nguyên thì 7x+7⋮4x+3
=>28x+28⋮4x+3
=>28x+21+7⋮4x+3
=>7⋮4x+3
=>4x+3∈{1;-1;7;-7}
=>4x∈{-2;-4;4;-10}
=>x∈\(\left\lbrace-\frac12;-1;1;-\frac52\right\rbrace\)
mà x nguyên
nên x∈{-1;1}
e: ĐKXĐ: x∈R
Để \(\frac{2x^2-x+2}{x^2-x+2}\) là số nguyên thì \(2x^2-x+2\vdots x^2-x+2\)
=>\(2x^2-2x+4+x-2\vdots x^2-x+2\)
=>\(x-2\vdots x^2-x+2\)
=>\(\left(x-2\right)\left(x+1\right)\vdots x^2-x+2\)
=>\(x^2-x-2\vdots x^2-x+2\)
=>\(x^2-x+2-4\vdots x^2-x+2\)
=>\(-4\vdots x^2-x+2\)
mà \(x^2-x+2=\left(x-\frac12\right)^2+\frac74\ge\frac74\forall x\)
nên \(x^2-x+2\in\left\lbrace2;4\right\rbrace\)
TH1: \(x^2-x+2=2\)
=>\(x^2-x=0\)
=>x(x-1)=0
=>\(\left[\begin{array}{l}x=0\\ x=1\end{array}\right.\)
Thay lại vào phân số, ta thấy x=0 thỏa mãn
TH2: \(x^2-x+2=4\)
=>\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>\(\left[\begin{array}{l}x=2\\ x=-1\end{array}\right.\)
Thay lại vào phân số, ta thấy x=2 thỏa mãn
Vậy: x∈{0;2}
Tìm các số nguyên x để các phân thức sau nhận giá trị nguyên:
a. 5x+11 (tử số) / 2x+3 (mẫu số)
b. 5x-4 (tử số) / 3x-1 (mẫu số)
c. 5x/3x+2
d. 7x+7/4x+3
e. 2x^2-x+2/x^2-x+2
Không biết mẫu số và x như thế nào? Bạn xem lại