A=-4/3+|3x-1/2|
3x^4 + 3x^2y^2 + 6x^3y - 27x^2
x^4 + x^3 - x^2 + x
2x^5 - 6x^4 - 2a^2x^3 - 6ax^3
x^5 + x^4 + x^3 + x^2 + x + 1
x^3 - 1 + 5x^2 - 5 + 3x - 3
1/4.(a + 1)^2 - 4/9.(a - 2)^2
12a^2b^2 - 3.(a^2b^2)^2
4x^2y^2 - (x^2 + y^2 - a^2)^2
(a + b + c)^2 + (a + b - c)^2 - 4c^2
x^3 - 1 + 5x^2 - 5 + 3x - 3
Bài 1 : Tìm thương Q và dư R sao cho A= B.Q+R biết ;
a) A = \(x^4+3x^3+2x^2-x-4\) và B = \(x^2-2x+3\)
b) A = \(2x^3-3x^2+6x-4\) và B = \(x^2-x+3\)
c) A = \(2x^4+x^3+3x^2+4x+9\) và B = \(x^2+1\)
d) A = \(2x^3-11x^2+19x-6\) và B = \(x^2-3x+1\)
c) A= \(2x^4-x^3-x^2-x+1\) và B = \(x^2+1\)
1) Tìm x,biết :
a) 3/2 . |x-5/3| - 4/5 = 4/3 . |x-5/3| + 1
b) 2.|3x +1| = 1/3 . |3x + 1| +5
c) 1/4 - 5/2 . | 3x - 1/5| = 2/3. |3x - 1/5| - 2/3
a) 3/2.|x - 5/3| - 4/5 = 4/3.|x - 5/3| + 1
<=> 3/2.|x - 5/3| = 4/3.|x - 5/3| + 1 + 4/5
<=> 3/2.|x - 5/3| = 9/5 + 4|x - 5/3|/3
<=> 3/2.|x - 5/3| - 4.|x - 5/3|/3 = 9/5
<=> |x - 5/3|/6 = 9/5
<=> |x - 5/3| = 9/5.6
<=> |x - 5/3| = 54/5
<=> x - 5/3 = 54/5 hoặc x - 5/3 = -54/5
x = 54/5 + 5/3 x = -54/5 - 5/3
x = 187/15 x = -137/15
b) 2.|3x + 1| = 1/3.|3x + 1| + 5
<=> 2.|3x + 1| - 1/3.|3x + 1| = 5
<=> 5/3.|3x + 1| = 5
<=> 5.|3x + 1| = 5.3
<=> 5.|3x + 1| = 15
<=> |3x + 1| = 15 : 5
<=> |3x + 1| = 3
3x + 1 = 3 hoặc 3x + 1 = -3
3x = 3 - 1 3x = -3 - 1
3x = 2 3x = -4
x = 2/3 x = -4/3
=> x = 2/3 hoặc x = -4/3
c) làm tương tự câu a) mình hơi lời
Làm câu c) cho
\(\frac{1}{4}-\frac{5}{2}\left|3x-\frac{1}{5}\right|=\frac{2}{3}\left|3x-\frac{1}{5}\right|-\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{4}+\frac{2}{3}=\frac{2}{3}\left|3x-\frac{1}{5}\right|+\frac{5}{2}\left|3x-\frac{1}{5}\right|\)
\(\Leftrightarrow\frac{3}{12}+\frac{8}{12}=\left|3x-\frac{1}{5}\right|\left(\frac{2}{3}+\frac{5}{2}\right)\)
\(\Leftrightarrow\left|3x-\frac{1}{5}\right|\left(\frac{4}{6}+\frac{15}{6}\right)=\frac{11}{12}\)
\(\Leftrightarrow\frac{19}{6}\left|3x-\frac{1}{5}\right|=\frac{11}{12}\)
\(\Leftrightarrow\left|3x-\frac{1}{5}\right|=\frac{11}{12}.\frac{6}{19}\)
\(\Leftrightarrow\left|3x-\frac{1}{5}\right|=\frac{11}{38}\)
\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{1}{5}=\frac{11}{38}\\3x-\frac{1}{5}=-\frac{11}{38}\end{cases}}\)
Giải tiếp nha
1) Rút gọn
a) (3x - 2)2 - (1+ 5x)2
b) (3x + 4)(3x - 4) - (5 - x)2
c) (\(\dfrac{1}{2}\)x + 4)2 - (\(\dfrac{1}{2}\)x + 3)(\(\dfrac{1}{2}\)x - 3)
a) (3x - 2)2 - (1 + 5x)2
= (3x - 2 - 1 - 5x)(3x - 2 + 1 + 5x)
= (-2x - 3)(8x - 1)
b) (3x + 4)(3x - 4) - (5 - x)2
= (3x)2 - 42 - (25 - 10x + x2)
= 9x2 - 16 - 25 + 10x - x2
= 8x2 + 10x - 41
c) \(\left(\dfrac{1}{2}x+4\right)^2-\left(\dfrac{1}{2}x+3\right)\left(\dfrac{1}{2}x-3\right)\)
\(=\left(\dfrac{1}{2}x\right)^2+2.\dfrac{1}{2}x.4+4^2-\left[\left(\dfrac{1}{2}x\right)^2-3^2\right]\)
\(=\dfrac{1}{4}x^2+4x+16-\dfrac{1}{4}x^2+9\)
\(=4x+25\)
a: =9x^2-12x+4-25x^2-10x-1
=-16x^2-22x+3
b: =9x^2-16-x^2+10x-25
=8x^2+10x-41
c: \(=\dfrac{1}{4}x^2+4x+16-\dfrac{1}{4}x^2+9=4x+25\)
Tìm nghiệm : a) (2x-3).(2x+3) B)(x-4).(x-1).(x-2) C)2x(3x-1)-3x(5+2x) D)(3x-2).(3x+2)-4.(x-1)
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)
\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)
\(\Rightarrow x\left(6x-2-15-6x\right)\)
\(\Rightarrow-16x=0\)
\(\Rightarrow x=0\)
d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)
\(\Rightarrow9x^2-4-4x+4=0\)
\(\Rightarrow9x^2-4x=0\)
\(\Rightarrow x\left(9x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
\(c,2x\left(3x-1\right)-3x\left(5+2x\right)=0\\ \Leftrightarrow6x^2-2x-15x-6x^2=0\\ \Leftrightarrow-17x=0\\ \Leftrightarrow x=0\\ d,\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\\ \Leftrightarrow9x^2-4-4x+4=0\\ \Leftrightarrow9x^2-4x=0\\ \Leftrightarrow x\left(9x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
27x^3 - 27 x^2 +3x - 1
1/27 + x^3
x^3- 3x^2+3x-1
0,001-1000x^3
12/5 x^2y^2-9x^4 - 4/25y^4
a^2y^2+b^2x^2-2axby
100-(3x-y)^2
64x^2-(8a+b)^2
27x^3-a^3b^3
b: \(x^3+\dfrac{1}{27}=\left(x+\dfrac{1}{3}\right)\left(x^2-\dfrac{1}{3}x+\dfrac{1}{9}\right)\)
c: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
e: \(a^2y^2-2axby+b^2x^2\)
\(=\left(ay\right)^2-2\cdot ay\cdot bx+\left(bx\right)^2\)
\(=\left(ay-bx\right)^2\)
f: \(100-\left(3x-y\right)^2\)
\(=\left(10-3x+y\right)\left(10+3x-y\right)\)
g: \(64x^2-\left(8a+b\right)^2\)
\(=\left(8x\right)^2-\left(8a+b\right)^2\)
\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)
mấy bn check hộ mk, nếu sai hãy chỉ ra giùm và sử lại nhé,
A=|x-2|+|2x-3|+|3x-4| ap dung BĐT|x|+|y|>=|x+y| |x-2|+|3x-4|=|x-2|+|4-3x|>=|x-2+4-3x|=|-2x-2| =)A= |x-2|+|4-3x|+|2x-3|>=|-2x+2|+|2x-3|>=|-2x+2+2x-3| =|-1|=1 dau = xay ra khi (x-2)(4-3x)>=0 va (-2x+2)(2x-3)>=0 =)4/3
+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)
+) Lỗi lớn: Dấu bằng xảy ra: \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )
Nhưng mà thử vào chọn x= 1=> A = 3 > 1. Nên bài này sai.
Làm lại nhé!
A = | x - 2 | + | 2 x - 3 | + | 3 x - 4 |
= | x - 2 | + | 2 x - 3 | + 3 | x - 4/3 |
= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |
= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x | + | 2x - 8/3 | )
\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |
= 2/3 + 1/3 = 1
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)
1.Giải phương trình:
a) 4x-8/2x^2+1 = 0
b)x^2-x-6/x-3 = 0
c)x+5/3x-6 - 1/2 = 2x-3/2x-4
d)12/1-9x^2 = 1-3x/1+3x - 1+3x/1-3x
2.Giải các phương trình:
a)5 + 96/x^2-16 = 2x-1/x+4 - 3x-1/4-x
b)3x+2/3x-2 - 6/2+3x = 9x^2/9x^2-4
c)x+1/x^2+x+1 - x-1/x^2-x+1 = 3/x(x^4+x^2+1)
Bài 1.
\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)
Bài 2.
\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)
ĐK: \(x\ne2\)
\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)
ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)
\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)
Bài 2.
\(a)5 + \dfrac{{96}}{{{x^2} - 16}} = \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{4 - x}}\)
ĐK: \(x\ne\pm4\)
\( Pt \Leftrightarrow \dfrac{{96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} - \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{x - 4}} = - 5\\ \Leftrightarrow \dfrac{{96 - \left( {2x - 1} \right)\left( {x - 4} \right) - \left( {3x - 1} \right)\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow \dfrac{{ - 5{x^2} - 2x + 96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow - 5{x^2} - 2x + 96 = - 5\left( {{x^2} - 16} \right)\\ \Leftrightarrow 96 - 2x = 80\\ \Leftrightarrow - 2x = - 16\\ \Leftrightarrow x = 8\left( {tm} \right)\\ b)\dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} = \dfrac{{9{x^2}}}{{9{x^2} - 4}} \)
ĐK: \(x \ne \dfrac{2}{3};x \ne -\dfrac{2}{3}\)
\( Pt \Leftrightarrow \dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} - \dfrac{{9{x^2}}}{{9{x^2} - 4}} = 0\\ \Leftrightarrow \dfrac{{{{\left( {2 + 3x} \right)}^2} - 6\left( {3x - 2} \right) - 9{x^2}}}{{\left( {3x - 2} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{16 - 6x}}{{\left( {3 - 2x} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow 16 - 6x = 0\\ \Leftrightarrow - 6x = - 16\\ \Leftrightarrow x = \dfrac{8}{3}\left( {tm} \right)\\ c)\dfrac{{x + 1}}{{{x^2} + x + 1}} - \dfrac{{x - 1}}{{{x^2} - x + 1}} = \dfrac{3}{{x\left( {{x^4} + {x^2} + 1} \right)}} \)
Ta có: \(x(x^4+x^2+1)=x[(x^2+1)^2-x^2]=x(x^2+x+1)(x^2-x+1)\)
Do \(\left\{ \begin{array}{l} {x^2} + x + 1 = {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\forall x\\ {x^2} - x + 1 = \left( {x - \dfrac{1}{2}} \right) + \dfrac{3}{4} > 0\forall x \end{array} \right.\) nên phương trình xác định với mọi $x \ne 0$
Quy đồng, rồi biến đổi phương trình về dạng \(2x=3 \Leftrightarrow x =\dfrac{3}{2} (tm)\)
1Rút gọn biểu thức a) (3x+1)^2+(3x-1)^2-2(3x+1)(3x-1) b) 8(3^2+1)(3^4+1)...(2^16+1) c ) (2^2+1)(2^4+1)...(2^32+1) 2 Tìm x biết a) x(2x-1)-2x+1=0 b) 3x(x-1)=x-1 c) 3(x+2)-x^2-2x=0 d) x^3+x=0 3 Phân tích thành nhân tử a) 4x^3-x b) 6x^2-12xy+6y^2-24z^2
Bài 2:
a: Ta có: \(x\left(2x-1\right)-2x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Bài 1:
a) x (\(x^2\) + 2) + 2x\((1-\dfrac{1}{2}x^2)=4\)
b) (2x)\(^2\) (x – 1) + x(\(x^2\) + 4x) = 40
c) 3x(x – 2) – 3(\(x^2\) – 3) = 8
d) 2\(x^2\)(4\(x^3\) + 2x) + (\(x^2\) – 2)(- 2x)\(^3\) = 20
Bài 2:
P = 3x(\(\dfrac{2}{3}\)\(x^2\) − \(3x^4)\) + (3x)\(^2\) (\(x^3\) – 1) + (- 2x + 9)\(x^2\) - 12
Bài 2:
Ta có: \(P=3x\left(\dfrac{2}{3}x^2-3x^4\right)+9x^2\left(x^3-1\right)+x^2\left(-2x+9\right)-12\)
\(=2x^3-9x^5+9x^5-9x^2-2x^3+9x^2-12\)
=-12
Bài 1:
a: Ta có: \(x\left(x^2+2\right)+2x\left(1-\dfrac{1}{2}x^2\right)=4\)
\(\Leftrightarrow x^3+2x+2x-x^3=4\)
hay x=1
b: Ta có: \(4x^2\left(x-1\right)+x\left(x^2+4x\right)=40\)
\(\Leftrightarrow4x^3-4x^2+x^3+4x^2=40\)
\(\Leftrightarrow5x^3=40\)
hay x=2
c: Ta có: \(3x\left(x-2\right)-3\left(x^2-3\right)=8\)
\(\Leftrightarrow3x^2-6x-3x^2+9=8\)
\(\Leftrightarrow-6x=-1\)
hay \(x=\dfrac{1}{6}\)