Tìm x biết x là số tròn chục và 26 < x < 42
Các giá trị của x thỏa mãn yêu cầu đề bài là :
Tìm x biết x là số tròn chuc và 26 < x > 42
Cách giá trị của x thỏa mãn yêu cầu đề bài là :
x là một số tròn chục và thỏa mãn 323<x<333
Giá trị của x là
cho số tự nhiên x thỏa mãn x thuộc ư (20)tổng tất cả giá trị của x thỏa mãn yêu cầu của bài là :
a.30
b.42
c.35
D.6
tìm x Biết x là số tròn chục thỏa mãn x<50
-Số tròn chục có chữ số tận cùng là 0.
Các số thỏa mãn của x là: \(10;20;30;40\)
Các số tròn chục là:
\(10;20;30;40;50;60;70;80;90;100;110;...\)
Mà: \(x< 50\)
Nên các số x thỏa mãn là: \(10;20;30;40\)
Xét các hàm số f x = a x 2 − b a x + 3 và g x = x 2 − 4 x + 6 trên đoạn [1;5]. Biết trên đoạn [1;5] thì giá trị lớn nhất của f(x) bằng giá trị nhỏ nhất của g(x) và đạt tại cùng một điểm . Tính S là tổng các giá trị a, b thoả mãn yêu cầu bài toán .
A. S = 0
B. S = -1
C. S = 1 2
D. không tồn tại S
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : x - 2 2 + y 2 + z 2 = 9 và mặt phẳng (P): x+y-z+m=0, m là tham số. Biết rằng mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có bán kính r = 6 . Giá trị của tham số m thỏa mãn bằng
A. m=3 hoặc m=4
B. m=3 hoặc m=-5
C. m=1 hoặc m=-4
D. m=1 hoặc m=-5
ĐỀ BÀI: Cho x, y là các số dương thỏa mãn x+y=1. Tìm giá trị nhỏ nhất của biểu thức P= (1- 1/x²) (1- 1/y²)
CHO MIK HỎI SAO LẠI +16x+16y chứ ko phải là số khác
Vì nguyên tắc cân bằng điểm rơi của BĐT:
\(a+b+c\ge3\sqrt[3]{abc}\) với dấu "=" xảy ra khi \(a=b=c\)
Dự đoán dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Do đó, bạn cần 1 hằng số k sao cho:
\(\dfrac{2}{xy}+kx+ky\ge3\sqrt[3]{...}\)
Với \(\dfrac{2}{xy}=kx=ky\) khi \(x=y=\dfrac{1}{2}\)
Thay vào: \(\dfrac{2}{\dfrac{1}{2}.\dfrac{1}{2}}=k.\dfrac{1}{2}=k.\dfrac{1}{2}\Rightarrow k=16\)
Đó là lý do xuất hiện số 16
P/s: bài làm này rắc rối một cách rất không cần thiết
Sau khi đến đoạn: \(P=1+\dfrac{2}{xy}\)
Ta làm tiếp như sau:
Từ giả thiết: \(1=x+y\ge2\sqrt{xy}\Rightarrow\sqrt{xy}\le\dfrac{1}{2}\Rightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow\dfrac{1}{xy}\ge4\)
\(\Rightarrow P=1+2.\dfrac{1}{xy}\ge1+2.4=9\)
Như vậy đơn giản hơn nhiều :)
Tìm giá trị lớn Tìm giá trị lớn nhất và nhỏ nhất của x y biết rằng x y là các số nguyên dương thỏa mãn x + y=2009
Đường thẳng d : y = x + 4 cắt đồ thị hàm số y = x 3 + 2 m x 2 + ( m + 3 ) x + 4 tại 3 điểm phân biệt A(0;4) B và C sao cho diện tích tam giác MBC bằng 4, với M(1;3) Tìm tất cả các giá trị của m thỏa mãn yêu cầu bài toán
A. m=2 hoặc m=3
B. m=-2 hoặc m=3
C. m=3
D. m=-2 hoặc m=-3
Đáp án C
Hoành độ các giao điểm của đường thẳng d : y = x + 4 và độ thị hàm số y = x 3 + 2 m x 2 + ( m + 3 ) x + 4
là nghiệm của PT x 3 + 2 m x 2 + ( m + 3 ) x + 4 = x + 4 ⇒ x [ x 2 + 2 m x + ( m + 2 ) ] = 0
Điều kiện để tồn tại ba giao điểm là ∆ ' = m 2 - m - 2 = ( m + 1 ) ( m - 2 ) > 0 m + 2 ≢ 0 ⇔ m > 2 m < - 1 ( 1 ) m ≢ - 2
Khi đó tọa độ ba giao điểm là A(0;4) , B( A ( 0 ; 4 ) , B ( x 1 ; 4 + x 1 ) ) và C ( x 2 ; 4 + x 2 ) ⇒ B C → = ( x 2 - x 1 ; x 2 - x 1 )
Ta có B C = 2 ( x 2 - x 1 ) 2 = 2 x 2 + x 1 2 - 4 x 1 x 2 = 2 2 ( m 2 - m - 2 )
PT của đt BC là x - y + 4 = 0 ⇒ d M / B C = 1 - 3 + 4 1 2 + 1 2 = 2
Vậy nên S M B C = 1 2 2 . 2 2 ( m 2 - m - 2 ) = 2 ( m 2 - m - 2 ) = 4 ⇔ m 2 - m - 6 = 0 ⇒ m = - 2 m = 3
Kết hợp với điều kiện (1) ⇒ m = 3