Ôn tập chương 2: Hàm số bậc nhất

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ho Àng

ĐỀ BÀI: Cho x, y là các số dương thỏa mãn x+y=1. Tìm giá trị nhỏ nhất của biểu thức P= (1- 1/x²) (1- 1/y²)

CHO MIK HỎI SAO LẠI +16x+16y chứ ko phải là số khácundefinedundefined

Nguyễn Việt Lâm
7 tháng 1 2021 lúc 17:00

Vì nguyên tắc cân bằng điểm rơi của BĐT:

\(a+b+c\ge3\sqrt[3]{abc}\) với dấu "=" xảy ra khi \(a=b=c\)

Dự đoán dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Do đó, bạn cần 1 hằng số k sao cho:

\(\dfrac{2}{xy}+kx+ky\ge3\sqrt[3]{...}\)

Với \(\dfrac{2}{xy}=kx=ky\)  khi \(x=y=\dfrac{1}{2}\)

Thay vào: \(\dfrac{2}{\dfrac{1}{2}.\dfrac{1}{2}}=k.\dfrac{1}{2}=k.\dfrac{1}{2}\Rightarrow k=16\)

Đó là lý do xuất hiện số 16

P/s: bài làm này rắc rối một cách rất không cần thiết

Sau khi đến đoạn: \(P=1+\dfrac{2}{xy}\)

Ta làm tiếp như sau:

Từ giả thiết: \(1=x+y\ge2\sqrt{xy}\Rightarrow\sqrt{xy}\le\dfrac{1}{2}\Rightarrow xy\le\dfrac{1}{4}\)

\(\Rightarrow\dfrac{1}{xy}\ge4\)

\(\Rightarrow P=1+2.\dfrac{1}{xy}\ge1+2.4=9\)

Như vậy đơn giản hơn nhiều :)


Các câu hỏi tương tự
Hải Yến
Xem chi tiết
Nguyễn Thị Thùy Dung
Xem chi tiết
Ngoc An Pham
Xem chi tiết
Nguyễn Hương
Xem chi tiết
Ctuu
Xem chi tiết
Linh Ngoc Nguyen
Xem chi tiết
nugges :v
Xem chi tiết
Satoh Yuki
Xem chi tiết
Ngọc Trần
Xem chi tiết