Thao m =3 và HPT ta có:
\(\left\{{}\begin{matrix}\left(3-1\right)x+y=3\\x+\left(3-1\right)y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=6\\x+2y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=6\\3x=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy với m=3 thì HPT có nghiệm (x;y) = (\(\dfrac{4}{3};\dfrac{1}{3}\))
a) Thay m=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=3\\2x+4y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-1\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\2x=3-y=3-\dfrac{1}{3}=\dfrac{8}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\\x+\left(m-1\right)y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2-\left(m-1\right)y\\\left(m-1\right)\left(2-\left(m-1\right)y\right)+y=m\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2-my+y\\\left(m-1\right)\left(2-my+y\right)+y=m\left(1\right)\end{matrix}\right.\)
Từ (1) ta có:
\(\left(m-1\right)\left(2-my+y\right)=y=m\)
⇔\(2m-m^2y+my-2+my-y+y=m\)
⇔\(-m^2y+2my=-2m+2+m\)
⇔\(my\left(-m+2\right)=-2m+2+m\) (2)
Trường hợp 1:
\(-m+2=0\)
⇔m= \(\mp\)2
*Thay m=2 vào (2) ta có: 0y=0 ⇒m=2 (chọn)
*Thay m=-2 và (2) ta có: 0y= -4 ⇒m= -2 (loại)
Trường hợp 2:
-m+2 \(\ne0\)
⇔m\(\ne\) 2
⇒HPT có nghiệm duy nhất:
\(my=\dfrac{-2m+2+m}{-m+2}\)
⇒\(y=\dfrac{-2m+2+m}{-m+2}.\dfrac{1}{m}\)
⇒\(y=\dfrac{-2m+2+m}{-m^2+2m}\)
⇒\(x=2-m.\dfrac{-2m+2+m}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\)
Theo bài ra ta có:
\(2x^2-7y=1\)
⇔\(2.\left(2-m.\dfrac{-2m+2+m}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\right)^2-7\left(\dfrac{-2m+2+m}{-m^2+2m}\right)=1\)
\(2.\left(2-\dfrac{2m^2-2m-m^2}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\right)^2-\dfrac{14m-14-7m}{-m^2+2m}=1\)
Có gì bạn giải nốt nha, phương trình cũng "đơn giản" rồi
Mình bấm máy tính Casio nó ra kết quả m=1
nên với m =1 thì Thỏa mãn yêu cầu đề bài
:))))))))))