Ôn tập chương 2: Hàm số bậc nhất

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hải Yến

cho hệ phương trình (m - 1)x + y = m

                                x + ( m - 1)y = 2

a) giải hệ pt khi m = 3

b) tìm giá trị của m thỏa mãn \(2x^2 - 7y = 1 \)   

c) tìm các giá trị của m để biểu thức \(\dfrac{2x-3y}{x+y}\) nhận giá trị nguyên

Khang Diệp Lục
3 tháng 2 2021 lúc 19:50

Thao m =3 và HPT ta có: 

\(\left\{{}\begin{matrix}\left(3-1\right)x+y=3\\x+\left(3-1\right)y=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}4x+2y=6\\x+2y=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}4x+2y=6\\3x=4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Vậy với m=3 thì HPT có nghiệm (x;y) = (\(\dfrac{4}{3};\dfrac{1}{3}\))

Nguyễn Lê Phước Thịnh
3 tháng 2 2021 lúc 19:51

a) Thay m=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=3\\2x+4y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-1\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\2x=3-y=3-\dfrac{1}{3}=\dfrac{8}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Khang Diệp Lục
3 tháng 2 2021 lúc 20:44

b) \(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\\x+\left(m-1\right)y=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2-\left(m-1\right)y\\\left(m-1\right)\left(2-\left(m-1\right)y\right)+y=m\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}x=2-my+y\\\left(m-1\right)\left(2-my+y\right)+y=m\left(1\right)\end{matrix}\right.\)

 

Từ (1) ta có: 

\(\left(m-1\right)\left(2-my+y\right)=y=m\)

\(2m-m^2y+my-2+my-y+y=m\)

\(-m^2y+2my=-2m+2+m\)

\(my\left(-m+2\right)=-2m+2+m\) (2)

Trường hợp 1: 

\(-m+2=0\)

⇔m= \(\mp\)2

*Thay m=2 vào (2) ta có: 0y=0 ⇒m=2 (chọn)

*Thay m=-2 và (2) ta có: 0y= -4 ⇒m= -2 (loại)

Trường hợp 2:

-m+2 \(\ne0\)

⇔m\(\ne\) 2

⇒HPT có nghiệm duy nhất: 

 

\(my=\dfrac{-2m+2+m}{-m+2}\)

\(y=\dfrac{-2m+2+m}{-m+2}.\dfrac{1}{m}\)

\(y=\dfrac{-2m+2+m}{-m^2+2m}\)

\(x=2-m.\dfrac{-2m+2+m}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\)

Theo bài ra ta có: 

\(2x^2-7y=1\)

\(2.\left(2-m.\dfrac{-2m+2+m}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\right)^2-7\left(\dfrac{-2m+2+m}{-m^2+2m}\right)=1\)

\(2.\left(2-\dfrac{2m^2-2m-m^2}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\right)^2-\dfrac{14m-14-7m}{-m^2+2m}=1\)

Có gì bạn giải nốt nha, phương trình cũng "đơn giản" rồi haha

Mình bấm máy tính Casio nó ra kết quả m=1 

nên với m =1 thì Thỏa mãn yêu cầu đề bài

:))))))))))

 


Các câu hỏi tương tự
Nguyễn Hương
Xem chi tiết
Hải Yến
Xem chi tiết
Danh Lê
Xem chi tiết
Danh Lê
Xem chi tiết
Hải Yến
Xem chi tiết
Hải Yến
Xem chi tiết
nugges :v
Xem chi tiết
Hải Yến
Xem chi tiết
Linh Ngoc Nguyen
Xem chi tiết