tìm dư trong phép chia:\(x^{50}+x^{10}+x^5+x+1\) cho \(x^{20}+x^{10}+1\)
*Đề hsg lớp 8
n! = n x (n - 1) x (n - 2) x...x 3 x 2 x 1. Ví dụ, 4! = 4 x 3 x 2 x 1. Tìm số dư trong phép chia tổng 1! + 2! + 3! + ... + 10! cho 20.
-Từ số 4! đến số 10! đều chia hết cho 20 do có thừa số 4.5=20.
-Mà \(1!+2!+3!=1+2+6=9\) chia 20 dư 9 nên tổng đó chia 20 dư 9.
biết rằng n! = n x (n-1) x (n-2) x ... x 3 x 2 x 1.Ví dụ, 4! = 4 x 3 x 2 x 1. Tìm số dư trong phép chia tổng 1! + 2! + 3! + ... + 10! cho 20
-Từ số 4! đến số 10! đều chia hết cho 20 do có thừa số 4.5=20.
-Mà 1!+2!+3!=1+2+6=91!+2!+3!=1+2+6=9 chia 20 dư 9 nên tổng đó chia 20 dư 9.
cho đa thức P(x) = (x+5)(x+10)(x+15)(x+20) +2016
tìm số dư trong phép chia P(x) cho x2 + 25x + 120
mk lm cách khác, bn tham khảo nhé
\(P\left(x\right)=\left(x+5\right)\left(x+10\right)\left(x+15\right)\left(x+20\right)+2016\)
\(=\left(x^2+25x+100\right)\left(x^2+25x+150\right)+2016\)
Đặt \(x^2+25x+125=a\) ta có:
\(P\left(x\right)=\left(a-25\right)\left(a+25\right)+2016\)
\(=a^2-625+2016\)
\(=a^2-25+1416\)
\(=\left(a-5\right)\left(a+5\right)+1416\)
Thay trở lại ta được: \(P\left(x\right)=\left(x^2+25x+120\right)\left(x^2+25x+130\right)+1416\)
Ta thấy \(\left(x^2+25x+120\right)\left(x^2+25x+130\right)\) \(⋮\) \(x^2+25x+120\)
suy ra \(P\left(x\right)\) chia cho \(x^2+25x+120\) dư \(1416\)
Ta có : P(x) = (x + 5)(x + 20)(x +15)(x + 10)
=> P(x) = (x2 + 25x + 100)(x2 + 25x + 150)
=> P(x) = (x2 + 25x + 120)(x2 + 25x + 150) - 20(x2 + 25x + 150)
=> P(x) = (x2 + 25x + 120)(x2 + 25x + 150) - 20(x2 + 25x + 120) - 20.30
=> P(x) = (x2 + 25x + 120)(x2 + 25x + 150 - 20) - 600
Vì (x2 + 25x + 120)(x2 + 25x + 150 - 20) chia hết cho (x2 + 25x + 120)
Nên : Số dư là : 600
Tìm số dư trong phép chia đa thức f(x) cho đa thức g(x)
a) f(x) = x⁴ – 5x³ + 2x – 10. g(x) = x – 5
b) f(x) = 8x² – 6x + 5. g(x) = 2x – 1
\(a,f\left(x\right):g\left(x\right)=\left[\left(x-5\right)\left(x^3+2\right)\right]:\left(x-5\right)=x^3+2\\ \Rightarrow\text{Dư }0\\ b,f\left(x\right):g\left(x\right)=\left(8x^2-4x-2x+1+4\right):\left(2x-1\right)\\ =\left[4x\left(2x-1\right)-\left(2x-1\right)+4\right]:\left(2x-1\right)\\ =4x-1\left(\text{dư }4\right)\)
Tìm số dư trong phép chia đa thức f(x) cho đa thức g(x)
a) f(x) = x⁴ – 5x³ + 2x – 10. g(x) = x – 5
b) f(x) = 8x² – 6x + 5. g(x) = 2x – 1
b: \(=\dfrac{8x^2-4x-2x+1+4}{2x-1}=4x-1+\dfrac{4}{2x-1}\)
Cho đa thức A = 3 10 5 x x a 3 2 và B = 3 1 x
a) Hãy đặt phép chia và tìm dư R trong phép chia A cho B.
b) Tìm a để đa thức A chia hết cho đa thức B
Không thực hiện phép tính chia, tìm đa thức dư trong phép chia
\(\left(x^{10}+x^9+x^8+...+x+1\right):\left(x^2-1\right)\)
Tìm x biết:
1).40÷x dư 4; 45÷x dư 3; 50÷x dư 2.
2).x÷3 dư 1; x÷4 dư 2; x÷5 dư 3 và x<200.
3).x-1 là ước của 6.
4).10 chia hết cho (2x+1).
5).x+13 chia hết cho x+1.
6).2x+108 chia hết cho 2x+3
\(x-1\in\left\{1;6;2;3;-1;-6;-2;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;7;3;4;0;-5;-1;-2\right\}\)
\(10⋮2x+1\)
\(\Rightarrow2x+1\in\left\{1;2;5;10;-1;-2;-5;-10\right\}\)
\(\Rightarrow2x\in\left\{0;1;4;9;-2;-6;-11\right\}\)
\(\Leftrightarrow x\in\left\{0;\frac{1}{2};2;\frac{9}{2};-1;-3;-\frac{11}{2}\right\}\)
\(x+13⋮x+1\)
\(\Leftrightarrow\left(x+1\right)+12⋮x+1\)
Do \(x+1⋮x+1\) nên \(12⋮x+1\)
\(\Rightarrow x+1\in\left\{1;12;6;2;4;3;-1;-12;-6;-2;-4;-3\right\}\)
\(\Rightarrow x\in\left\{0;11;5;1;3;2;-2;-13;-7;-3;-5;-4\right\}\)
Tìm số dư trong phép chia đa thứ f(x) cho đa thức g(x) trong các trường hợp sau
a) f(x) = x^21 + x^20 +x^19 + 101 ; g(x) = x+1
B)f(x) = 3^3 + 4^2 - 2x + 7 ; g(x) = x+2
C) f(x) = x^4 - 5x^3 + 2x - 10 ; g(x) = x-5
b: f(x)=3x^3+4x^2-2x+7
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{3x^3+4x^2-2x+7}{x+2}\)
\(=\dfrac{3x^3+6x^2-2x^2-4x+2x+4+3}{x+2}\)
=3x^2-2x+2+3/x+2
Số dư là 3
c: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3\left(x-5\right)+2\left(x-5\right)}{x-5}=x^3+2\)
=>Số dư là 0