Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhi Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 8 2023 lúc 10:27

a: Xét ΔADN và ΔCBM có

góc A=góc C

AD=CB

góc ADN=góc CBM

=>ΔADN=ΔCBM

b: ΔADN=ΔCBM

=>AN=CM

AN+NB=AB

CM+MD=CD

mà AN=CM và AB=CD

nên NB=MD

mà NB//MD

nên NBMD là hình bình hành

c: Xét tứ giác AMCN có

AN//CM

AN=CM

=>AMCN là hình bình hành

Lelemalin
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 20:51

a: Ta có: \(\widehat{ADE}=\dfrac{\widehat{ADC}}{2}\)

\(\widehat{CBF}=\dfrac{\widehat{CBA}}{2}\)

mà \(\widehat{ADC}=\widehat{CBA}\)

nên \(\widehat{ADE}=\widehat{CBF}\)

Xét ΔADE và ΔCBF có 

\(\widehat{ADE}=\widehat{CBF}\)

AD=BC

\(\widehat{DAE}=\widehat{BCF}\)

Do đó: ΔADE=ΔCBF

Suy ra: AE=CF

Ta có: AE+EB=AB

CF+DF=CD

mà AB=CD

và AE=CF

nên EB=DF

Xét tứ giác DEBF có 

EB//DF

EB=DF

Do đó: DEBF là hình bình hành

Suy ra: DE//BF

d: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 20:52

e: Ta có: ABCD là hình bình hành

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường\(\left(1\right)\)

Ta có: EBFD là hình bình hành

nên Hai đường chéo EF và BD cắt nhau tại trung điểm của mỗi đường\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra AC,BD,EF đồng quy

Minh Qúy
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2023 lúc 12:31

a: Xét ΔADE và ΔCBF có

góc A=góc C

AD=CB

góc ADE=góc CBF

=>ΔADE=ΔCBF

b: ΔADE=ΔCBF

=>góc AED=góc CFB

=>góc AED=góc FBE

=>DE//BF

Xét tứ giác BEDF có

BE//DF

DE//BF

=>BEDF là hình bình hành

c: góc AED=góc EDC

góc EDC=góc ADE

=>góc AED=góc ADE

=>ΔADE cân tại A

=>góc AED=góc ADE=(180-120)/2=30 độ

góc DEB=180-30=150 độ

Lê Ngọc lâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 8 2023 lúc 17:43

loading...  loading...  

Nguyễn Thị Kim Anh
Xem chi tiết
๖Fly༉Donutღღ
3 tháng 9 2017 lúc 20:35

Ta có :

\(\widehat{MAN}=\widehat{MCN}\)

\(\Rightarrow\)\(NC\)// \(AM\)( 1 )

Mà  \(ABCD\)- hình thang cân

\(\Rightarrow\)\(AB\)//  \(CD\)( 2 )

Từ 1 và 2  \(\Leftrightarrow\)AMCN là hình bình hành   ( tứ giác có 2 cặp cạnh song song với nha )

Ngô Thái Sơn
3 tháng 9 2017 lúc 20:33

Do ABCD là hbh nên góc DAB = góc BAD

Vì có AM và AN là tpg của góc DAB và BCD nên góc NCM = góc NAM

Do AB//CD nên góc CNB = góc NCM = MAC

=> AM //NC (do NAM và góc BNC đòng vị và bằng nhau ) mà có AB//CD nên ANCM là hbh

=> đpcm

Lữ Điền Thanh
3 tháng 9 2017 lúc 20:43

Ta A = C

=> MAB = NCD ( T/C PG )

AMD = MAB ( SLT )

=> AMD = NCD

Mà chúng lại ở vị trí ĐV nên MA // NC

Xét tứ giác AMCN có:

NA // MC ( AB // CD )

MA // NC ( CMT )

=> Tứ giác AMCN là HBH

                                                                                        ( ALL DONE ! )

Ng My
Xem chi tiết
Ngọc Anh Trương Nữ
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 10 2021 lúc 22:24

a, Vì AD//BC (hbh ABCD) nên \(\widehat{AIB}=\widehat{IAD}\left(so.le.trong\right)\)

Mà \(\widehat{BAI}=\widehat{IAD}\) (AI là p/g) nên \(\widehat{BAI}=\widehat{AIB}\)

Do đó tg ABI cân tại B

Nguyễn Lê Phước Thịnh
30 tháng 10 2021 lúc 22:24

a: Xét ΔBAI có \(\widehat{BAI}=\widehat{BIA}\)

nên ΔBAI cân tại B

Lưu Thùy Linh
Xem chi tiết
Dương Thúy Hiền
Xem chi tiết