Tìm GTLN của M = \(\frac{3}{4x^2-4x+5}\)
Tìm GTLN của : \(\frac{3}{4x^2-4x+5}\)
\(A=\frac{3}{4x^2-4x+5}\)
\(=\frac{3}{4x^2-4x+1+4}\)
\(=\frac{3}{\left(2x-1\right)^2+4}\)
\(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+4\ge4\)
\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
\(MaxA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
Đặt \(A=\frac{3}{4x^2-4x+5}\)
Biến đổi : \(4x^2-4x+5\)
\(=\left[\left(2x\right)^2-2.2x.1+1^2\right]+4\)
\(=\left(2x-1\right)^2+4\)
Ta có : \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+4\ge4\)
\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
\(\Rightarrow A\le\frac{3}{4}\)
Dấu " = " xảy ra khi và chỉ khi \(2x-1=0\)
\(2x=1\)
\(x=\frac{1}{2}\)
Vậy \(Max_A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
Tìm GTLN của
C = \(\frac{3}{4x^2-4x+5}\)
\(C=\frac{3}{4x^2-4x+5}\)
\(C=\frac{3}{4x^2-4x+1+4}\)
\(C=\frac{3}{\left(4x^2-4x+1\right)+4}\)
\(C=\frac{3}{\left(4x-1\right)^2+4}\)
Ta thấy: \(\left(4x-1\right)^2\ge0\Rightarrow\left(4x-1\right)^2+4\ge4\)
\(\Rightarrow\frac{3}{\left(4x-1\right)^2+4}\le\frac{3}{4}\)
\(Max_A=\frac{3}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
Tìm GTLN ( GTNN) của biểu thức:
\(\frac{x^2-4x-4}{x^2-4x+5}\)
\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)
Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2
Vậy gtnn của biểu thức là -8 khi x=2
đề yêu cầu tìm cả max và min hay chỉ 1 là được?
Tấm vải thứ 2 dài là :
85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
85 + 120 + 120 = 325 ( m )
Đ/S : 325 m
chúc cậu hok tốt @_@
Tìm GTLN của biểu thức
\(B=\frac{3}{4x^2+4x+3}\)
Để B đạt GTLN thì \(4x^2+4x+3\) phải đạt GTNN
Ta có: \(4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\ge2\forall x\)
=> GTNN của 4x2 +4x +3 = 2 tại x = -1/2
=> GTLN của B = 3/2 tại x = -1/2
=.= hk tốt!!
Tìm GTLN của B=\(\frac{4-4x^2+4x}{5}\)
Plz làm giúp mình đi, mk tick cho. Thân <3
\(B=\frac{4-4x^2+4x}{5}=\frac{-\left(4x^2-4x-4\right)}{5}\)
\(=\frac{-\left(4x^2-4x+1\right)+5}{5}\)
\(=\frac{-\left(2x-1\right)^2+5}{5}\)
Ta có: \(-\left(2x-1\right)^2\le0\)
\(\Rightarrow-\left(2x-1\right)^2+5\le5\)
\(\Rightarrow\frac{-\left(2x-1\right)^2+5}{5}\ge1\)
Vậy \(B_{min}=1\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Tìm GTLN, GTNN của biểu thức \(M=\frac{4x+1}{x^2+3}\).
Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)
Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2
\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)
Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)
1) Tìm GTNN của biểu thức \(A=x^2+4y^2+2xy-4x+2y+2015\)
2) Tìm GTLN, GTNN của \(B=\sqrt{x-1}+\sqrt{5-x}\)
3) Tìm GTLN của biểu thức \(M=\frac{2012}{x^2-4x+2016}\)
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
Tìm GTLN và GTNN của
A=\(\frac{4x+1}{4x^2+2}\)
B=\(\frac{4x+5}{x^2+2x+6}\)
Băng Băng 2k6: P2 m làm là miền giá trị của lớp 9, lớp 8 chưa học Delta nên không dùng được nhé!
Đơn giản lắm!
Tìm min A:
\(A=\frac{4x+1}{4x^2+2}=\frac{\left(x+1\right)^2}{2x^2+1}-\frac{1}{2}\ge-\frac{1}{2}\)
Đẳng thức xảy ra khi \(x=-1\)
Tìm max A:
\(A=\frac{4x+1}{4x^2+2}=-\frac{\left(2x-1\right)^2}{2\left(2x^2+1\right)}+1\le1\)
Đẳng thức xảy ra khi \(x=\frac{1}{2}\)
Vậy....
----------------------------------------------------------------------------------------------------
Tìm min B:
\(B=\frac{4x+5}{x^2+2x+6}=\frac{\left(2x+7\right)^2}{5\left(x^2+2x+6\right)}-\frac{4}{5}\ge-\frac{4}{5}\)
Đẳng thức xảy ra khi \(x=-\frac{7}{2}\)
Tìm max B:
\(B=\frac{4x+5}{x^2+2x+6}=-\frac{\left(x-1\right)^2}{x^2+2x+6}+1\le1\)
Đẳng thức xảy ra khi \(x=1\)
Vậy...
tìm GTLN của biểu thức:
1, B=\(\frac{3}{4x^2-4x+5}\)
2, C=\(\frac{x^2-6x+14}{x^2+6x-12}\)
\(B=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\Rightarrow B_{max}=\frac{3}{4}\) khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
2/ Xem lại đề bài, đề bài này thì ko có max, 12 ở mẫu là dấu + thì may ra làm được