Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phuong Truc
Xem chi tiết
Rimuru tempest
9 tháng 11 2018 lúc 22:49

a) \(sin^6x+cos^6x+3sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cox^2x+cos^4x\right)+3sin^2x.cos^2x\)

\(=sin^4x-sin^2x.cox^2x+cos^4x+3sin^2x.cos^2x\)

\(=sin^4x+2sin^2x.cox^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\text{​​}\text{​}\)

b) \(sin^4x-cos^4x-\left(sinx+cosx\right)\left(sinx-cosx\right)\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)\)

\(=1\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)=0\)

c) \(cos^2x+tan^2x.cos^2x\)

\(=cos^2x+\dfrac{sin^2x}{cos^2x}.cos^2x=sin^2x+cos^2x=1\)

Phạm Minh Thuận
Xem chi tiết
Phạm Minh Thuận
26 tháng 10 2014 lúc 10:38

\(=\left(sin^2\alpha\right)^3+\left(cos^2\alpha\right)^3+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)\left(sin^4\alpha-sin^2\alpha.cos^2\alpha+cos^4\alpha\right)+3sin^2\alpha-cos^2\alpha\)

\(=sin^4\alpha-sin^2\alpha.cos^2\alpha+cos^4\alpha+3sin^2\alpha-cos^2\alpha\)

\(=sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha\right)^2+\left(cos^2\right)^2-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\)

\(=1-2sin^2\alpha.cos^2\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)

\(=1-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha-cos^2\alpha\)

\(=1-3sin^2\alpha.\left(1-sin^2\alpha\right)+3sin^2\alpha-\left(1-sin^2\alpha\right)\)

\(=1-3sin^2\alpha-sin^2\alpha+3sin^2\alpha-\left(1-sin^2\alpha\right)\)

\(1-3sin^2\alpha-sin^2\alpha+3sin^2\alpha-1+sin^2\alpha\)

\(=0\)

Nguyễn Mai Lý
Xem chi tiết
Không Tâm Nguyệt Lượng
Xem chi tiết
Nguyễn Mai Chi
Xem chi tiết
Nguyễn Mai Chi
Xem chi tiết
Akai Haruma
14 tháng 8 2019 lúc 12:23

Lời giải:

a)

\(\frac{\sin a}{1+\cos a}+\cot a=\frac{\sin a}{1+\cos a}+\frac{\cos a}{\sin a}=\frac{\sin ^2a+\cos^2a+\cos a}{\sin a(1+\cos a)}\)

\(=\frac{1+\cos a}{\sin a(1+\cos a)}=\frac{1}{\sin a}\) (đpcm)

b)

\(\frac{1}{\cos a}-\frac{\cos a}{1+\sin a}=\frac{1+\sin a-\cos ^2a}{\cos a(1+\sin a)}=\frac{(1-\cos ^2a)+\sin a}{\cos a(\sin a+1)}\)

\(=\frac{\sin^2a+\sin a}{\cos a(\sin a+1)}=\frac{\sin a(\sin a+1)}{\cos a(\sin a+1)}=\frac{\sin a}{\cos a}=\tan a\) (đpcm)

c)

\(\frac{\tan a-\sin a}{\sin ^3a}=\frac{\frac{\sin a}{\cos a}-\sin a}{\sin ^3a}=\frac{\frac{1}{\cos a}-1}{\sin ^2a}=\frac{1-\cos a}{\cos a\sin ^2a}=\frac{1-\cos a}{\cos a(1-\cos ^2a)}=\frac{1}{\cos a(1+\cos a)}\)

d)

\(\frac{\sin a+\cos a-1}{\sin a-\cos a+1}=\frac{(\sin a+\cos a-1)(\sin a+\cos a+1)}{(\sin a-\cos a+1)(\sin a+\cos a+1)}=\frac{(\sin a+\cos a)^2-1}{(\sin a+1)^2-\cos ^2a}\)

\(=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-\cos ^2a}=\frac{1+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-(1-\sin ^2a)}\)

\(=\frac{2\sin a\cos a}{2\sin ^2a+2\sin a}=\frac{2\sin a\cos a}{2\sin a(\sin a+1)}=\frac{\cos a}{1+\sin a}\) (đpcm)

Akai Haruma
14 tháng 8 2019 lúc 12:25

Mấu chốt trong các bài này là việc sử dụng công thức $\sin ^2a+\cos ^2a=1$

Akai Haruma
12 tháng 8 2019 lúc 16:55

Lời giải:

a)

\(\frac{\sin a}{1+\cos a}+\cot a=\frac{\sin a}{1+\cos a}+\frac{\cos a}{\sin a}=\frac{\sin ^2a+\cos^2a+\cos a}{\sin a(1+\cos a)}\)

\(=\frac{1+\cos a}{\sin a(1+\cos a)}=\frac{1}{\sin a}\) (đpcm)

b)

\(\frac{1}{\cos a}-\frac{\cos a}{1+\sin a}=\frac{1+\sin a-\cos ^2a}{\cos a(1+\sin a)}=\frac{(1-\cos ^2a)+\sin a}{\cos a(\sin a+1)}\)

\(=\frac{\sin^2a+\sin a}{\cos a(\sin a+1)}=\frac{\sin a(\sin a+1)}{\cos a(\sin a+1)}=\frac{\sin a}{\cos a}=\tan a\) (đpcm)

c)

\(\frac{\tan a-\sin a}{\sin ^3a}=\frac{\frac{\sin a}{\cos a}-\sin a}{\sin ^3a}=\frac{\frac{1}{\cos a}-1}{\sin ^2a}=\frac{1-\cos a}{\cos a\sin ^2a}=\frac{1-\cos a}{\cos a(1-\cos ^2a)}=\frac{1}{\cos a(1+\cos a)}\)

d)

\(\frac{\sin a+\cos a-1}{\sin a-\cos a+1}=\frac{(\sin a+\cos a-1)(\sin a+\cos a+1)}{(\sin a-\cos a+1)(\sin a+\cos a+1)}=\frac{(\sin a+\cos a)^2-1}{(\sin a+1)^2-\cos ^2a}\)

\(=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-\cos ^2a}=\frac{1+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-(1-\sin ^2a)}\)

\(=\frac{2\sin a\cos a}{2\sin ^2a+2\sin a}=\frac{2\sin a\cos a}{2\sin a(\sin a+1)}=\frac{\cos a}{1+\sin a}\) (đpcm)

Nguyễn Hà Phương
Xem chi tiết
Hồ Lê Ánh Nguyệt
Xem chi tiết
Hoàng Minh Hoàng
31 tháng 7 2017 lúc 20:56

=(sin a+cos a)(sin^2.a-sina.cosa+cos^2a)+(sina+cosa)sina.cosa-cos a

=(sin a+cos a)(1-sina.cosa+sina.cosa)-cosa

=sina+cosa-cosa

=sina

Vinh ML
Xem chi tiết