Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cecilia Phạm
Xem chi tiết
Phan Minh Triết
Xem chi tiết
Nguyễn Thị BÍch Hậu
6 tháng 7 2015 lúc 9:58

\(M=2n^4+2n^3-9n^3-9n^2+7n^2+7n+6n+6=\left(n+1\right)\left(2n^3-9n^2+7n+6\right)=\left(n+1\right)\left(2n^3-4n^2-5n^2+10n-3n+6\right)\)

\(=\left(n+1\right)\left(n-2\right)\left(2n^2-5n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n^2+n-6n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n+1\right)\left(n-3\right)\)

\(=\left(n-1+2\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)+2\left(n-2\right)\left(n-3\right)\left(2n-2+3\right)\)

\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2\left(2n-2\right)\left(n-2\right)\left(n-3\right)+3.2\left(n-2\right)\left(n-3\right)\)

\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2.2\left(n-1\right)\left(n-2\right)\left(n-3\right)+6\left(n-2\right)\left(n-3\right)\)

ta có: (n-1)(n-2)(n-3) là tích của 3 số tự nhiên liên tiếp (với n>=3) => có 1 số chia hết cho 1, cho 2, cho 3 

và vì (1;2;3)=1 => tích của chúng chia hết cho 1.2.3=6 => chia hết cho 6

tiếp theo với 4(n-1)(n-2)(n-3) cũng vậy

còn 6(n-2)(n-3) thì hiển nhiên chia hết cho 6 nhé

=> chia hết cho 6

 

Trần Ngọc Anh
Xem chi tiết
Akai Haruma
22 tháng 7 2020 lúc 13:26

Lời giải:

Ta có:

$N=2n^4-7n^3-2n^2+13n+6$

$=2n^3(n+1)-9n^2(n+1)+7n(n+1)+6(n+1)$

$=(n+1)(2n^3-9n^2+7n+6)$

$=(n+1)[2n^2(n-2)-5n(n-2)-3(n-2)]$

$=(n+1)(n-2)(2n^2-5n-3)$

$=(n+1)(n-2)[2n(n-3)+(n-3)]=(n+1)(n-2)(n-3)(2n+1)$

Vì $n-2,n-3$ là 2 số nguyên liên tiếp nên $(n-2)(n-3)\vdots 2(*)$

Mặt khác:

Nếu $n=3k$ thì $n-3\vdots 3\Rightarrow N\vdots 3$

Nếu $n=3k+1$ thì $2n+1=2(3k+1)+1=3(2k+1)\vdots 3\Rightarrow N\vdots 3$

Nếu $n=3k+2$ thì $n-2\vdots 3\Rightarrow N\vdots 3$

Vậy $N\vdots 3(**)$

Từ $(*); (**)$ mà $(2,3)=1$ nên $N\vdots 6$ (đpcm)

Trần Ngọc Anh
Xem chi tiết
Đạt Trần Tiến
2 tháng 12 2017 lúc 22:38

Bài nà viết sai đề

\(N=2n^4-7n^3-2n^3+13n+6=(n-2)(n-3)(n+1)(2n+1)\)

(*) Ta có n\(\in Z\)=> n-2,n-3 là 2 số nguyên liên tiếp=> có 1 số \(\vdots 2\)

=> (n-2)(n-3)(n+1)(2n+1)\(\vdots 2\) (1)

(*) Vì n là số nguyên nên có 3 dạng 3k,3k+1,3k+2

Với n=3k=>n-3 \(\vdots 3\)=>\(N\vdots 3\)

Với n=3k+1=>\(2n+1 \vdots 3\)=> N\(\vdots 3\)

Với n=3k+2=> n+1 \(\vdots 3\)=> N \(\vdots 3\)

=> N\(\vdots 3 mọi n\)(2)

Từ (1),(2) kết hợp (2,3)=1=> N\(\vdots 6\)

Vậy N chia hết cho 6

Vân Trang Nguyễn Hải
Xem chi tiết
Lê Minh
Xem chi tiết

a; (n + 10)(n + 15)

+ Nếu n là số chẵn ta có: n + 10 ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2

+ Nếu n là số lẻ ta có: n + 15 là số chẵn 

⇒ (n + 15) ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2 

Từ những lập luận trên ta có:

A = (n + 10)(n + 15) ⋮ 2 ∀ n \(\in\) N

Mavis Vermilion
Xem chi tiết
nguyễn thế hiếu
17 tháng 4 2018 lúc 20:54

khó quá

Nguyễn Kiều Minh Vy
Xem chi tiết
Lil Học Giỏi
Xem chi tiết
Akai Haruma
19 tháng 10 2019 lúc 10:10

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

Khách vãng lai đã xóa
Akai Haruma
3 tháng 10 2019 lúc 14:53

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

Khách vãng lai đã xóa