Những câu hỏi liên quan
Toru
Xem chi tiết
Gia Huy
6 tháng 7 2023 lúc 21:35

loading...  

Bình luận (0)
blua
6 tháng 7 2023 lúc 21:34

Từ x8+x4y4+y8=(x4+y4)2-x4y4=(x4+y4-x2y2(x4+y4+x2y2)=4(x4+y4-x2y2) =8
=>(x4+y4-x2y2)=2=>x4+y4=2+x2y2  kết hợp với x4+y4+x2y2=4
=> 2+x2y2+x2y2=4 => x2y2=1 (x4y4 sẽ = 1 nốt ) => x4+y4=3 và x8+y8=7
Xét (x4+y4)3=x12+y12+3x4y4(x4+y4)=x12+y12+3.1.3=33=27
=>x12+y12=18=> A = 18+1=19

Bình luận (0)
cuong dang
Xem chi tiết
Nguyễn Tuấn
22 tháng 3 2016 lúc 22:10
x^8+x^4*y^4+y^8=(x^4+y^4)^2-x^4*y^4=((x^2+y^2)^2-2x^2*y^2)^2-(x^2*y^2)^2=8x^4+x^2*y^2+y^4=(x^2+y^2)^2-x^2*y^2=0

Đặt x^2+y^2=a; x^2*y^2=b

nên hệ pt 

a^2-b=0(a^2-2b)^2-b^2=8

Giải ra tìm a,b rồi thay vô tìm x,y

Bình luận (0)
hiền hà
Xem chi tiết
Thiên Ân
Xem chi tiết
Trà My
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết
Dương Thị Anh
Xem chi tiết
Akai Haruma
28 tháng 1 2023 lúc 12:44

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết đề như trên khó theo dõi quá.

Bình luận (0)
Kiều Trang
Xem chi tiết
Hoắc Thiên Kình
23 tháng 6 2019 lúc 19:14

Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)

\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :

\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)

\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)

Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :

\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)

                                  \(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)

                                   \(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

Tương tự , chứng minh đc :

\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)

          \(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)

           \(\ge1\)

Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1

Bình luận (0)
Nguyễn Tuấn
Xem chi tiết
Trương Phúc Uyên Phương
17 tháng 3 2016 lúc 20:30

bài 3 là giải 2 hệ p~ ko

Bình luận (0)