Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Xuân Phong
Xem chi tiết
T.Thùy Ninh
6 tháng 6 2017 lúc 16:04

a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\)\(5⋮5\) (1)

\(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)

Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)

b, \(n^3\left(n^2-7\right)-36n\)

\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)

Nguyễn Xuân Tiến 24
6 tháng 6 2017 lúc 16:07

Bn Mai Xuân Phong ơi!Câu a, 5x3hay là 5n3 vậy?

Ngô Linh
Xem chi tiết
Linh Ngô
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
Nii-chan
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2020 lúc 21:04

a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:

\(n^5-n⋮5\)(vì 5 là số nguyên tố)

Ta có: \(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)

Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)

Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)

\(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)

và ƯCLN(2;3)=1

nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)

hay \(n^5-n⋮6\)

\(n^5-n⋮5\)(cmt)

và ƯCLN(6;5)=1

nên \(n^5-n⋮6\cdot5\)

hay \(n^5-n⋮30\)(đpcm)

ngọc phan
Xem chi tiết
Huỳnh Khánh Ly
28 tháng 9 2016 lúc 15:33

mình cần câu hỏi này

Phạm Khánh Ly
Xem chi tiết
Bang Bang 2
2 tháng 8 2018 lúc 9:34

a, Khai trển phương trình : 

(5n+2)^2 - 4 = (25n^2 + 2*2*5n + 2^2) - 4 = 25n^2 + 20n + 4 - 4 
= 25n^2 + 20n = 5n(5n + 4) 

--> (52+2)^2 - 4 = 5n(5n + 4) hiển nhiên chia hết cho 5. 

lưu ý : (a+b)^2 = a^2 + 2ab + b^2

Nguyễn Phương Mai
Xem chi tiết
Nguyen Van Thanh
10 tháng 11 2016 lúc 22:58

em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122

Nguyễn Phương Mai
11 tháng 11 2016 lúc 19:05

em cam on thay a

Phan Nghĩa
17 tháng 10 2020 lúc 14:32

Ta có \(n^4-10n^2+9=n^4-n^2-\left(9n^2-9\right)=n^2\left(n^2-1\right)-9\left(n^2-1\right)=\left(n^2-9\right)\left(n^2-1\right)\)

\(=\left(n-3\right)\left(n+3\right)\left(n-1\right)\left(n+1\right)=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

Do n là số lẻ suy ra n có dạng \(2d+1\)nên ta sẽ cm \(\left(2d-2\right)2d\left(2d+2\right)\left(2d+4\right)=16\left(d-1\right)d\left(d+1\right)\left(d+2\right)⋮16\)

Giờ ta cần chứng minh \(\left(d-1\right)d\left(d+1\right)\left(d+2\right)⋮24\)thật vậy :

  \(d-1;d;d+1;d+2\)là 4 số nguyên liên tiếp nên chia hết cho 8 và 3 

Suy ra ta có điều phải chứng minh

Khách vãng lai đã xóa
Nguyen Thanh Tung
Xem chi tiết
Nguyễn Ngọc Quý
16 tháng 7 2015 lúc 8:38

Ta có: số chẵn chia hết cho 2

Nếu n là số lẻ thì (n+3)(n+6) = (chẵn)(lẻ) nên chia hết cho 2

Nếu n là số chẵn thì (n+3)(n+6)=(lẻ)(chẳn) nên chia hết cho 2

Vậy với mọi n thuộc N thì tích đều chia hết cho

Ta có: số chẵn chia hết cho 2

Nếu n là số lẻ thì (n+3)(n+6) = (chẵn)(lẻ) nên chia hết cho 2

Nếu n là số chẵn thì (n+3)(n+6)=(lẻ)(chẳn) nên chia hết cho 2

Vậy với mọi n thuộc N thì tích đều chia hết cho

assasinsatthu
29 tháng 7 2017 lúc 22:05

Ta có: số chẵn chia hết cho 2

Nếu n là số lẻ thì (n+3)(n+6) = (chẵn)(lẻ) nên chia hết cho 2

Nếu n là số chẵn thì (n+3)(n+6)=(lẻ)(chẳn) nên chia hết cho 2

Vậy với mọi n thuộc N thì tích đều chia hết cho