CMR: với mọi n thuộc N thì A=10n + 2 chia hết cho 3
a) CMR:\(5x^3+15n^2+10n\)
Luôn chia hết cho 30 với mọi n thuộc Z
b) CMR: \(n^3\left(n^2-7\right)-36n\)
Chia hết cho 105 với mọi x thuộc Z
a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\) vì \(5⋮5\) (1)
và \(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)
Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)
b, \(n^3\left(n^2-7\right)-36n\)
\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)
\(=n\left[\left(n^3-7n\right)^2-36\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)
Bài 10: CMR: 3n^4-14n^3+21n^2-10n chia hết cho 24 (với mọi n thuộc N)
Bài 11: CMR: m^3+20m chia hết cho 48 với mọi m là số chẵn
Bài 12: a^5-5a^3+4a chia hết cho 120 với mọi a thuộc Z
Bài 13: m, n thuộc N sao cho 24m^4+1=n^2
CMR: mn chia hết cho 5
Bài 14: 17^19+19^17 chia hết cho 18
Bài 15: Cho A=1^3+2^3+3^3+...+100^3
B=1+2+3+...+100
CMR: A chia hết cho B
Bài 10: CMR: 3n^4-14n^3+21n^2-10n chia hết cho 24 (với mọi n thuộc N)
Bài 11: CMR: m^3+20m chia hết cho 48 với mọi m là số chẵn
Bài 12: a^5-5a^3+4a chia hết cho 120 với mọi a thuộc Z
Bài 13: m, n thuộc N sao cho 24m^4+1=n^2
CMR: mn chia hết cho 5
Bài 14: 17^19+19^17 chia hết cho 18
Bài 15: Cho A=1^3+2^3+3^3+...+100^3
B=1+2+3+...+100
CMR: A chia hết cho B
a) CMR: ( n^2+n-1)^2 chia hết cho 24 với mọi số nguyên n
b) CMR: n^3+6n^2 +8n chia hết cho 48 với mọi số n chẵn
c) CMR : n^4 -10n^2 +9 chia hết cho 384 với mọi số n lẻ
CMR:
a) n5 - n chia hết cho 30 với n thuộc N
b) n4-10n2 + 9 chia hết cho 384 với mọi n lẻ, n thuộc Z
a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:
\(n^5-n⋮5\)(vì 5 là số nguyên tố)
Ta có: \(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)
Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)
Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)
mà \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)
và ƯCLN(2;3)=1
nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)
hay \(n^5-n⋮6\)
mà \(n^5-n⋮5\)(cmt)
và ƯCLN(6;5)=1
nên \(n^5-n⋮6\cdot5\)
hay \(n^5-n⋮30\)(đpcm)
Cmr:5n3+15n2+10n luôn chia hết cho 30 với mọi n thuộc Z
CMR:
a)(5n+2)^2-4 chia hết cho 5 với mọi sối nguyên
b)n^3-n chia hết cho 6 với mọi sối nguyên
c)n^3+23 chia hết cho 6 với mọi sối nguyên
d)3n^4-14n^3+21n^2-10n chia hết cho 24 với mọi sối nguyên
a, Khai trển phương trình :
(5n+2)^2 - 4 = (25n^2 + 2*2*5n + 2^2) - 4 = 25n^2 + 20n + 4 - 4
= 25n^2 + 20n = 5n(5n + 4)
--> (52+2)^2 - 4 = 5n(5n + 4) hiển nhiên chia hết cho 5.
lưu ý : (a+b)^2 = a^2 + 2ab + b^2
Chứng minh:
a) 24n -1 chia hết cho 15 với mọi n thuộc N
b) 3663 -1 chia hết cho 7 và không chia hết cho 37
c) n4 -10n2 +9 chia hết cho 384 với mọi n lẻ, n thuộc Z
d) a3 -a chia hết cho 3
e) a7 -a chia hết cho 7
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122
Ta có \(n^4-10n^2+9=n^4-n^2-\left(9n^2-9\right)=n^2\left(n^2-1\right)-9\left(n^2-1\right)=\left(n^2-9\right)\left(n^2-1\right)\)
\(=\left(n-3\right)\left(n+3\right)\left(n-1\right)\left(n+1\right)=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
Do n là số lẻ suy ra n có dạng \(2d+1\)nên ta sẽ cm \(\left(2d-2\right)2d\left(2d+2\right)\left(2d+4\right)=16\left(d-1\right)d\left(d+1\right)\left(d+2\right)⋮16\)
Giờ ta cần chứng minh \(\left(d-1\right)d\left(d+1\right)\left(d+2\right)⋮24\)thật vậy :
\(d-1;d;d+1;d+2\)là 4 số nguyên liên tiếp nên chia hết cho 8 và 3
Suy ra ta có điều phải chứng minh
CMR với mọi n thuộc N thì (n+3) (n+6) chia hết cho 2
Ta có: số chẵn chia hết cho 2
Nếu n là số lẻ thì (n+3)(n+6) = (chẵn)(lẻ) nên chia hết cho 2
Nếu n là số chẵn thì (n+3)(n+6)=(lẻ)(chẳn) nên chia hết cho 2
Vậy với mọi n thuộc N thì tích đều chia hết cho
Ta có: số chẵn chia hết cho 2
Nếu n là số lẻ thì (n+3)(n+6) = (chẵn)(lẻ) nên chia hết cho 2
Nếu n là số chẵn thì (n+3)(n+6)=(lẻ)(chẳn) nên chia hết cho 2
Vậy với mọi n thuộc N thì tích đều chia hết cho
Ta có: số chẵn chia hết cho 2
Nếu n là số lẻ thì (n+3)(n+6) = (chẵn)(lẻ) nên chia hết cho 2
Nếu n là số chẵn thì (n+3)(n+6)=(lẻ)(chẳn) nên chia hết cho 2
Vậy với mọi n thuộc N thì tích đều chia hết cho