Chứng minh rằng
a, 813-243+241 chia hết cho 13
b, 934-2722+8116 chia hết cho 657
Cho các số nguyên a,b.Chứng minh rằng
a)2a+3b chia hết cho 13 khi và chỉ khi 5a+b chai hết cho 13
b)4a+3b chia hết cho 11 khi và chỉ khi 7a-3b chia hết cho 11
Lời giải:
a.
$2a+3b\vdots 13$
$\Leftrightarrow 2a+13a+3b\vdots 13$
$\Leftrightarrow 15a+3b\vdots 13$
$\Leftrightarrow 3(5a+b)\vdots 13$
$\Leftrightarrow 5a+b\vdots 13$
b.
$4a+3b\vdots 11$
$\Leftrightarrow 4a-11a+3b\vdots 11$
$\Leftrightarrow -7a+3b\vdots 11$
$\Leftrightarrow -(7a-3b)\vdots 11$
$\Leftrightarrow 7a-3b\vdots 11$ (đpcm)
Chứng minh rằng
a) ab + ba chia hết cho 11
b) ab - ba chia hết cho 9 với a > b
a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)
Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11
b) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=10a+b-10b-a=9a-9b=9.\left(a-b\right)\)
Vì 9⋮9 nên với \(a>b\) thì \(\overline{ab}-\overline{ba}⋮9\)
a)ab+ba
=a.10+b.1+b.10+a.1
=a.10+a.1+b.10+b.1
=a.(10+1)+b.(10.1)
=a.11+b.11
=11.(a+b)⋮11(vì 11⋮11)
b)ab - ba
= 10a + b - (10b + a)
= 10a + b - 10b - a
= 9a - 9b = 9(a - b)
Vậy ta suy ra 9(a - b) chia hết cho 9 hay ab - ba chia hết cho 9 (a > b)
Bài 1)Chứng minh rằng
a) 52014+52013-52012 chia hết cho 29
b) 7500+7499-7498 chia hết cho 11
a/ \(5^{2014}+5^{2013}-5^{2012}=5^{2012}\left(5^2+5-1\right)=5^{2012}.29⋮29\left(đpcm\right)\)
b/ \(7^{500}+7^{499}-7^{498}=7^{498}\left(7^2+7-1\right)=7^{498}.55⋮11\left(đpcm\right)\)
Cho 3a+2b+c chia hết cho 7.Chứng minh 23a+13b+17c chia hết cho 7.
\(23a+13b+17c=14a+9a+7b+6b+14c+3c=.\)
\(=\left(14a+7b+14c\right)+\left(9a+6b+3c\right)\)
\(=7\left(2a+b+2c\right)+3\left(3a+2b+c\right)\)
Ta có
\(7\left(2a+b+2c\right)\)chia hết cho 7
\(3a+2b+c\)chia hết cho 7 nên \(3\left(3a+2b+c\right)\)chia hết cho 7
\(\Rightarrow23a+13b+17c\)chia hết cho 7
\(3a+2b+c⋮7\)
\(\Leftrightarrow30a+20b+10c⋮7\)
\(\Leftrightarrow\left(7a+7b-7c\right)+\left(23a+13b+17c\right)⋮7\)
\(\Leftrightarrow7\left(a+b-c\right)+\left(23a+13b+17c\right)⋮7\)
Ta thấy \(7\left(a+b-c\right)⋮7\)
Để \(7\left(a+b-c\right)+\left(23a+13b+17c\right)⋮7\Leftrightarrow23a+13b+17c⋮7\)(đpcm)
Cộng cả tử và mẫu của một phân số 23/40 cùng một số tự nhiên n rồi rút gọn, ta được 3/4.Tìm số tự nhiên n.
chứng minh rằng
A = \(3+3^2+3^3+3^4+...+3^{60}\)
a) A chia hết cho 3
b) A chia hết cho 4
c) A chia hết cho 13
giúp mình mik cần gấp
a) \(A=3+3^2+3^3+...+3^{60}\)
Vì \(3⋮3;3^2⋮3;3^3⋮3;...;3^{60}⋮3\)
\(\Rightarrow3+3^2+3^3+...+3^{60}⋮3\\ \Rightarrow A⋮3\)
b) \(A=3+3^2+3^3+...+3^{60}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\\ =3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\\ =\left(1+3\right)\left(3+3^3+...+5^{59}\right)\\ =4\left(3+3^3+...+5^{59}\right)⋮4\)
Cho biết 111a + 25b chia hết cho 12 với a, b thuộc N. Chứng minh 9a + 13b chia hết cho 12
Cho biết 111a + 25b chia hết cho 12 với a, b thuộc N. Chứng minh 9a + 13b chia hết cho 12
Bạn xem lại đề bài nhé. Với \(a=1,b=9\) thì \(111a+25b=336⋮12\) nhưng \(9a+13b=126⋮̸12\). Mình nghĩ đề bài là chứng minh \(9a+3b⋮12\). Vì \(111a+25b⋮12\) nên \(108a+24b+3a+b⋮12\) hay \(3a+b⋮12\) hay \(9a+3b⋮12\).
Chứng minh: a,222^333+333^222 chia hết cho 13
b, 3^105+4^105 chai hết cho 13 nhưng ko chia hết cho 11
a)
Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)
\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)
\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)
\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)
Vậy $222^{333}+333^{222}$ chia hết cho $13.$
b) Ta có:
\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)
\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)
\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)
Vậy $3^{105}+4^{105}$ chia hết cho $13.$
Lại có:
\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)
\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)
Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)
Vậy $3^{105}+4^{105}$ không chia hết cho $11.$
P/s: Rất lâu rồi không giải, không chắc.
Chứng minh: a,222^333+333^222 chia hết cho 13
b, 3^105+4^105 chai hết cho 13 nhưng ko chia hết cho 11
Bài 2:cho a-b=6.Chứng minh rằng a+5b chia hết cho 6 và a-13b chia hết cho 6
a + 5b = (a - b) + 6b = 6 + 6b = 6(1 + b) chia hết cho 6
a - 13b = (a - b) - 12b = 6 - 12b = 6(1 - 2b) chia hết cho 6