tim du cua
a)x^3-9x^2+6x+16 : x-3
b)x+x^3+x^9+x^27:x-1 ; :x^2-1
c)x^99+x^55+x^11+x+7 :x+1 ; :x^2+1
d)f(x)=x^50+x^49+...+x^2+x+1 :x^2-1
2,Tim du cua phep chia:
a, x+x3+x9+x27+x243cho x-1
b,(x+1).(x+3).(x+5).(x+7)+1999 cho x2+8x+12
2,Tim du cua phep chia:
a, x+x3+x9+x27+x243cho x-1
b,(x+1).(x+3).(x+5).(x+7)+1999 cho x2+8x+12
rút gọn rồi tính giá trị biểu thức
a,\(\dfrac{9x^2-6x+1}{9x^2+1}\) tại x =-3
b, \(\dfrac{x^2-6x+9}{-9x+3x^2}\) tại x=-\(\dfrac{1}{3}\)
c, \(\dfrac{x^2-4x+4}{2x^2-4x}\) tại x=-\(\dfrac{1}{2}\)
a) \(\dfrac{9x^2-6x+1}{9x^2-1}\)
\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{3x-1}{3x+1}\)
\(=\dfrac{3\cdot\left(-3\right)-1}{3\cdot\left(-3\right)+1}=\dfrac{-9-1}{-9+1}=\dfrac{-10}{-8}=\dfrac{5}{4}\)
b) Ta có: \(\dfrac{x^2-6x+9}{3x^2-9x}\)
\(=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}\)
\(=\dfrac{x-3}{3x}\)
\(=\dfrac{-\dfrac{1}{3}-3}{3\cdot\dfrac{-1}{3}}=\dfrac{-\dfrac{10}{3}}{-1}=\dfrac{10}{3}\)
c) Ta có: \(\dfrac{x^2-4x+4}{2x^2-4x}\)
\(=\dfrac{\left(x-2\right)^2}{2x\left(x-2\right)}\)
\(=\dfrac{x-2}{2x}\)
\(=\dfrac{\dfrac{-1}{2}-2}{2\cdot\dfrac{-1}{2}}=\dfrac{-\dfrac{5}{2}}{-1}=\dfrac{5}{2}\)
tim so du cua
(x^81+x^27+x^9+x^2+x):(x^2-1)
so du la 4x nhung minh can mot loi giai
1.phân tích đa thức thành nhân tử
x^4+3x^3-9x-9
x^2+6x-y^2+9
x^2+y^2-z^2-9t^2-2xy+6zt
7x^2-7xy-4x+4y
x^4+3x^3-9x-27
3a^2-6ab+3b^2-12c^2
x^2+3cs(2-3cd)-10xy-1+25y^2
CMR:giá trị của biểu thức sau không phụ thuộc vào biến x:
a.(-x-3)^3+(x+9)(x^2+27)
b.(x+1)(x^2-x+1)-(x-1)(x^2+x+1)
c.(3x+2)(9x^2-6x+4)-9x(3x^2+1)+9x
a, \(\left(-x-3\right)^3+\left(x+9\right)\left(x^2+27\right)\)
\(=-x^3-6x^2-9x-3x^2-18x-27+x^3+27x+9x^2+243\)
\(=216\)
=> Gía trị biểu thức ko phụ thuộc vào biến x
b, \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-x^2+x+x^2-x+1-x^3-x^2-x+x^2+x+1\)
\(=2\)
=> Gía trị biểu thức ko phụ thuộc vào biến x
c, tương tự
\(\left(\frac{X^2+3X}{X^3+3X^2+9X+27}+\frac{3}{X+9}\right):\left(\frac{1}{X-3}-\frac{6X}{X^3-3X^2+9X-27}\right)\)
= \(\left[\frac{x.\left(x+3\right)}{\left(x+3\right).\left(x^2+9\right)}+\frac{3}{x+9}\right]:\left[\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\) ]
\(=\frac{x+3}{x^2-9}.\frac{\left(x-3\right).\left(x^2+9\right)}{x^2+9-6x}\)
= \(\frac{\left(x-3\right).\left(x+3\right)}{\left(x-3\right)^2}\)
= \(\frac{x+3}{x-3}\)
k mik nhé. Plssss~
tìm x biết
a) x:(-1/3)^3=-1/3b) (x+1/2)^2=1/16
b) (x+1/2)^2=1/16
c) (3x+2)^3=-27
d)27^x:3^x=9
e)16/2^x=2
g)1/2.2^x+4.2^x=9.2^5
b) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\pm\frac{1}{4}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=\pm\frac{1}{4}.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{4}-\frac{1}{2}\\x=\left(-\frac{1}{4}\right)-\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{4};-\frac{3}{4}\right\}.\)
c) \(\left(3x+2\right)^3=-27\)
\(\Rightarrow\left(3x+2\right)^3=\left(-3\right)^3\)
\(\Rightarrow3x+2=-3\)
\(\Rightarrow3x=\left(-3\right)-2\)
\(\Rightarrow3x=-5\)
\(\Rightarrow x=\left(-5\right):3\)
\(\Rightarrow x=-\frac{5}{3}\)
Vậy \(x=-\frac{5}{3}.\)
Chúc bạn học tốt!
Bạn ơi, gõ Công thức trực quan cho dễ nhìn đi bạn! :)
a) \(x:\left(-\frac{1}{3}\right)^3=-\frac{1}{3}\)
\(\Rightarrow x=\left(-\frac{1}{3}\right).\left(-\frac{1}{3}\right)^3\)
\(\Rightarrow x=\left(-\frac{1}{3}\right)^4\)
\(\Rightarrow x=\frac{1}{81}\)
Vậy \(x=\frac{1}{81}.\)
d) \(27^x:3^x=9\)
\(\Rightarrow\left(27:3\right)^x=9\)
\(\Rightarrow9^x=9\)
\(\Rightarrow9^x=9^1\)
\(\Rightarrow x=1\)
Vậy \(x=1.\)
e) \(\frac{16}{2^x}=2\)
\(\Rightarrow2^x=16:2\)
\(\Rightarrow2^x=8\)
\(\Rightarrow2^x=2^3\)
\(\Rightarrow x=3\)
Vậy \(x=3.\)
Chúc bạn học tốt!
Cho biểu thức P=\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)