Tìm x, biết:
a)x(4x2-1)=0
b)3(x-1)2-3x(x-5)-2=0
c)x3-x2-x+1=0
d)2x2-5x-7=0
tìm số dư của phép chia đa thức: (x+1)(x+3)(x+5)(x+7) +2020 cho đa thức: \(x^2+8x+12\)
Tìm x biết:
a. x3 – 25x = 0 b. 3x(x- 2) – x + 2 = 0
c. x2 – 4x - 5 = 0 d.x3 – x2 + 3x – 3 = 0
e. x3 + 27 + ( x + 3)( x – 9) = 0
cho 2 đa thức :
P(x)=(x+1)(x+3)(x+5)(x+7)+a và Q(x)=x2+8x+9
tìm giá trị của a để đa thức P(x) chia hết cho đa thức Q(x)
Bài 1. (3,0 điểm) Thực hiện phép tính:
A) (5x4 + 3x3 – 4x – 5) : (x2 + 2) B) (27x3 +1) : (9x2 – 3x + 1) – (3x – 19) Bài 2. (2,5 điểm) Phân tích các đa thức sau thành nhân tử: a) x2 – y2 – z2 – 2yz b) 4x2 (x – 6) + 9y2 (6 – x) c) 6xy + 5x – 5y – 3x2 – 3y2 Bài 3. (1,5 điểm) Tìm x, biết: a) (2x – 5)2 = (x – 2)2 b) (x+1)(2_x)-(3x+5)(x+2)= -4x^2 +1 Bài 4. (1,5 điểm) a) Chứng tỏ rằng: 4x2 – x + 1 > 0 với mọi x b) Tìm a để đa thức 2x3 – 3x2 + x + a chia hết cho x + 2 Bài 5. (1,5 điểm) a) Tìm hai số x, y biết : x3 + y3 = 4021(x2 – xy + y2) và x – y = 1 b) Tìm giá trị nguyên của n để giá trị của biểu thức 3n3 + 10n2 – 5 chia hết cho giá trị của biểu thức 3n + 1.Bài 1: Làm tính nhân:
a. 3x2(5x2- 4x +3) b. – 5xy(3x2y – 5xy +y2)
c. (5x2- 4x)(x -3) d. (x – 3y)(3x2 + y2 +5xy)
Bài 2: Rút gọn các biểu thức sau:
a.(x-3)(x + 7) – (x +5)(x -1) b. (x + 8)2 – 2(x +8)(x -2) + (x -2)2
c. x2(x – 4)(x + 4) – (x2 + 1)(x2- 1) d. (x+1)(x2 – x + 1) – (x – 1)(x2 +x +1)
Bài 3: Phân tích các đa thức sau thành nhân tử:
a. – 24x^2y^2 + 12xy^3
b. x2 – 6 x +xy - 6y
c. 2x2 + 2xy - x - y
d. ax – 2x - a2 +2a
e. x3- 3x2 + 3x -1
f. 3x2 - 3y2 - 12x – 12y
g. x2 - 2xy – x2 + 4y2
h. x2 + 2x + 1 - 16
i. x2 - 4x + 4 - 25y2
k. x2 - 6xy + 9y2 -25z2
l. 81 – x2 + 4xy – 4y2
m.x2 +6x –y2 +9
n.x2 – 2x - 4y2 + 1
o. x2 – 2x -3
p. x2 + 4x -12 q. x2 + x – 6
s. x2 -5x -6
t. x2 - 8 x – 9
u, x2 + 3x – 18
v, x2 - 8x +15
x, x2 + 6x +8
z, x2 -7 x + 6
w, 3x2 - 7x + 2
y, x4 + 64
Bài 4: Tìm x biết:
a. x2-25 –( x+5 ) = 0
b. 3x(x-2) – x+ 2 = 0
c. x( x – 4) - 2x + 8 = 0
d. 3x (x + 5) – 3x – 15=0
e. ( 3x – 1)2 – ( x +5)2=0
f. ( 2x -1)2 – ( x -3)2=0
g.(2x -1)2- (4x2 – 1) = 0
g. x2(x2 + 4) – x2 – 4 = 0
i.x4 - x3 +x2 - x =0
k. 4x2 – 25 –( 2x -5)(2x +7)=0
l.x3 – 8 – (x -2)(x -12) = 0
m.2(x +3) –x2– 3x=0
Bài 5: Làm phép chia:
a. (x4+ 2x3+ 10x – 25) : (x2 + 5) b. (x3- 3x2+ 5x – 6): ( x – 2)
Bài 6: Tìm số a để đa thức 3x3 + 2x2 – 7x + a chia hết cho đa thức 3x – 1
1) Chứng minh rằng (n-1).(n+4)-(n-4).(n+1) luôn chia hết cho 6 với mọi số nguyên x
2) Xác định a, b, c biết:
a) (ax2+bx+c).(x+1)= x3+8x2+19x+12
b) (ax2+bx+c).(x+3)= x3+2x2-3x
c) (x2+cx+2) (ax+b)= x2+x2-2
3) Chứng minh rằng:
a) 352019-352018 chia hết cho 17
b) 432018+432019 chia hết cho11
Bài 1: Tính:
a) x2(x-2x3); b) (x2+1)(5-x); c) (x-2)(x2+3x-4); d) (x-2)(x-x2+4); e) (x2-1)(x2+2x); f) (2x-1)(3x+2)(3-x)
Bài 2: Tính:
a) (x-2y)2; b) (2x2+3)3; c) (x-2)(x2+2x+4); d) (2x-1)3
Bài 3: Rút gọn biểu thức:
a) (6x+1)2+(6x-1)2-2(1+6x)(6x-1); b) 3(22+1)(24+1)(28+1)(216+1); c) x(2x2-3)-x2(5x+1)+x2; d) 3x(x-2)-5x(1-x)-8(x2-3)
Bài 4: Tính nhanh:
a) 1012; b) 97.103; c) 772+232+77.46; d) 1052-52; e) A= (x-y)(x2+xy+y2)+2y3 tại x= \(\dfrac{2}{3}\) và y= \(\dfrac{1}{3}\)
a) ( 6x3 - 7x2 - x + 2 ) : ( 2x + 1 )
b) ( x4 - x3 + x2 + 3x ) : ( x2 - 2x + 3 )