Tìm nghiệm nguyên dương của phương trình:
\(3y^2+6y=1+\sqrt{1999-x^2-2x}\)
Tìm tất cả các nghiệm nguyên dương của phương trình :\(2x^2y-1=x^2+3y\)
\(\Leftrightarrow\left(2x^2-3\right)y=x^2+1\)
\(\Leftrightarrow y=\dfrac{x^2+1}{2x^2-3}\)
\(y\in Z\Rightarrow2y\in Z\Rightarrow\dfrac{2x^2+2}{2x^2-3}\in Z\Rightarrow1+\dfrac{5}{2x^2-3}\in Z\)
\(\Rightarrow2x^2-3=Ư\left(5\right)=\left\{-1;1;5\right\}\)
\(\Rightarrow x^2=\left\{1;2;4\right\}\Rightarrow x=\left\{1;2\right\}\)
- Với \(x=1\Rightarrow y=-2< 0\left(loại\right)\)
- Với \(x=2\Rightarrow y=1\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
tìm tất cả các nghiệm nguyên dương của phương trình 2x2y-1=x2+3y
Ta có: 2x2y - 1 = x2 + 3y
<=> 4x2y - 2 - 2x2 - 6y = 0
<=> 2x2(2y - 1) - 3(2y - 1) = 5
<=> (2x2 - 3)(2y - 1) = 5 = 1.5
Lập bảng:
2x2 - 3 | 1 | 5 |
2y - 1 | 5 | 1 |
x | \(\pm\sqrt{2}\)(loại) | 2 |
y | 1 |
Vậy nghiệm (x;y) của phương trình là (2; 1)
\(2x^2y-1=x^2+3y\)
\(\Leftrightarrow4x^2y-2=2x^2+6y\)
\(\Leftrightarrow\left(2y-1\right)\left(2x^2-3\right)=5\)
Đến đây đơn giản rồi :))))
a) Tìm nghiệm nguyên của phương trình sau : \(xy-2x-3y+1=0\)
b) Giải phương trình : \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
xy - 2x - 3y + 1 = 0
<=> x(y - 2) = 3y - 1
<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)
Để x nguyên thì (y - 2) phải là ước của 5 hay
(y - 2) = (1, 5, - 1, - 5)
Giải tiếp sẽ ra
2^x + (x^2 + 1). (y^2 - 6y + 8) =0
Câu 3. Tìm tham số nguyên dương của m để phương trình sqrt(2x ^ 2 - 6x + m - 3) = sqrt(x ^ 2 - 2x - 3) có đúng một nghiệm.
\(\sqrt{2x^2-6x+m-3}=\sqrt{x^2-2x-3}\) (1)
\(\Leftrightarrow2x^2-6x+m-3=x^2-2x-3\)
\(\Leftrightarrow x^2-4x+m=0\)
Phương trình (1) có đúng 1 nghiệm <=> \(\Delta'=0\) => (-2)2-1.m = 0 <=> 4-m = 0 <=> m=4
tìm nghiệm nguyên dương của phương trình: \(4y^4+6y^2-1=x\)
Bạn vào câu hỏi tương tự:
https://olm.vn/hoi-dap/detail/240776023190.html
Tìm nghiệm nguyên dương của phương trình 4y4 + 6y2 - 1 = x
https://olm.vn/hoi-dap/detail/240776023190.html
Tìm nghiệm nguyên dương của phương trình \(4y^4+6y^2-1=x\)
với mọi giá trị nguyên dương của y đều có thể tìm được mọi giá trị nguyên dương x
=> đề bài có vấn đề
Học tốt!!!!!!
Mình cũng đang mắc câu này T_T
@Linh Linh@ đề đúng mà
Đặt \(\sqrt{x}=a\left(a>0\right);y^2=b\left(b>0\right)\)
\(4y^4+6y^2-1=x\)
\(\Leftrightarrow4b^2+6b-1=a^2\)
\(\Leftrightarrow16b^2+24b-4=4a^2\)
\(\Leftrightarrow16b^2+24b+9-4a^2=13\)
\(\Leftrightarrow\left(4b+3\right)^2-4a^2=13\)
\(\Leftrightarrow\left(4b+3-2a\right)\left(4b+3+2a\right)=13\)
Ta có bảng
4b+3-2a | 1 | 13 |
4b+3+2a | 13 | 1 |
a | -3 | -3 |
b | -1 | 1 |
Nhận | Loại | |
x | 9 | |
y | 1 |
Vậy cặp (x;y) nguyên dương cần tìm là (9;1)
Tìm nghiệm nguyên của phương trình:
\(2x^2+3y^2+4x=19\)
tìm nghiệm nguyên dương của phương trình:
\(xy+yz+xz=xyz+2\)
\(2x^2+3y^2+4x=19\)
<=> \(2\left(x^2+2x+1\right)+3y^2=21\)
<=> \(2\left(x+1\right)^2+3y^2=21\)
<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)
=> \(y^2\le7\)(1)
Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)
=> 21 - 3y^2 là số chẵn => 3y^2 là số lẻ => y^2 là số chính phương lẻ (2)
Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1
=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4
Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)